
8C H A P T E R

Virtual
Memory

Practice Exercises

8.1 Under what circumstances do page faults occur? Describe the actions
taken by the operating system when a page fault occurs.
Answer:
A page fault occurs when an access to a page that has not been
brought into main memory takes place. The operating system verifies
the memory access, aborting the program if it is invalid. If it is valid, a
free frame is located and I/O is requested to read the needed page into
the free frame. Upon completion of I/O, the process table and page table
are updated and the instruction is restarted.

8.2 Assume that you have a page-reference string for a process with m
frames (initially all empty). The page-reference string has length p;
n distinct page numbers occur in it. Answer these questions for any
page-replacement algorithms:

a. What is a lower bound on the number of page faults?

b. What is an upper bound on the number of page faults?

Answer:

a. n

b. p

8.3 Consider the page table shown in Figure 9.30 for a system with 12-bit
virtual and physical addresses and with 256-byte pages. The list of free
page frames is D, E , F (that is, D is at the head of the list, E is second,
and F is last).

Convert the following virtual addresses to their equivalent physical
addresses in hexadecimal. All numbers are given in hexadecimal. (A
dash for a page frame indicates that the page is not in memory.)

• 9EF

• 111

23



24 Chapter 8 Virtual Memory

• 700

• 0FF

Answer:

• 9E F - 0E F

• 111 - 211

• 700 - D00

• 0F F - E F F

8.4 Consider the following page-replacement algorithms. Rank these algo-
rithms on a five-point scale from “bad” to “perfect” according to their
page-fault rate. Separate those algorithms that suffer from Belady’s
anomaly from those that do not.

a. LRU replacement

b. FIFO replacement

c. Optimal replacement

d. Second-chance replacement

Answer:

Rank Algorithm Suffer from Belady’s anomaly
1 Optimal no
2 LRU no
3 Second-chance yes
4 FIFO yes

8.5 Discuss the hardware support required to support demand paging.
Answer:
For every memory-access operation, the page table needs to be consulted
to check whether the corresponding page is resident or not and whether
the program has read or write privileges for accessing the page. These
checks have to be performed in hardware. A TLB could serve as a cache
and improve the performance of the lookup operation.

8.6 An operating system supports a paged virtual memory, using a central
processor with a cycle time of 1 microsecond. It costs an additional 1
microsecond to access a page other than the current one. Pages have 1000
words, and the paging device is a drum that rotates at 3000 revolutions
per minute and transfers 1 million words per second. The following
statistical measurements were obtained from the system:

• 1 percent of all instructions executed accessed a page other than the
current page.

• Of the instructions that accessed another page, 80 percent accessed
a page already in memory.



Practice Exercises 25

• When a new page was required, the replaced page was modified 50
percent of the time.

Calculate the effective instruction time on this system, assuming that the
system is running one process only and that the processor is idle during
drum transfers.
Answer:

effective access time = 0.99 × (1 �sec + 0.008 × (2 �sec)
+ 0.002 × (10,000 �sec + 1,000 �sec)
+ 0.001 × (10,000 �sec + 1,000 �sec)

= (0.99 + 0.016 + 22.0 + 11.0) �sec
= 34.0 �sec

8.7 Consider the two-dimensional array A:

int A[][] = new int[100][100];

where A[0][0] is at location 200 in a paged memory system with pages
of size 200. A small process that manipulates the matrix resides in page
0 (locations 0 to 199). Thus, every instruction fetch will be from page 0.

For three page frames, how many page faults are generated by
the following array-initialization loops, using LRU replacement and
assuming that page frame 1 contains the process and the other two
are initially empty?

a. for (int j = 0; j < 100; j++)
for (int i = 0; i < 100; i++)

A[i][j] = 0;

b. for (int i = 0; i < 100; i++)
for (int j = 0; j < 100; j++)

A[i][j] = 0;

Answer:

a. 5,000

b. 50

8.8 Consider the following page reference string:

1, 2, 3, 4, 2, 1, 5, 6, 2, 1, 2, 3, 7, 6, 3, 2, 1, 2, 3, 6.

How many page faults would occur for the following replacement
algorithms, assuming one, two, three, four, five, six, or seven frames?
Remember all frames are initially empty, so your first unique pages will
all cost one fault each.

• LRU replacement

• FIFO replacement

• Optimal replacement



26 Chapter 8 Virtual Memory

Answer:

Number of frames LRU FIFO Optimal
1 20 20 20
2 18 18 15
3 15 16 11
4 10 14 8
5 8 10 7
6 7 10 7
7 7 7 7

8.9 Suppose that you want to use a paging algorithm that requires a reference
bit (such as second-chance replacement or working-set model), but
the hardware does not provide one. Sketch how you could simulate a
reference bit even if one were not provided by the hardware, or explain
why it is not possible to do so. If it is possible, calculate what the cost
would be.
Answer:
You can use the valid/invalid bit supported in hardware to simulate the
reference bit. Initially set the bit to invalid. On first reference a trap to the
operating system is generated. The operating system will set a software
bit to 1 and reset the valid/invalid bit to valid.

8.10 You have devised a new page-replacement algorithm that you think may
be optimal. In some contorted test cases, Belady’s anomaly occurs. Is the
new algorithm optimal? Explain your answer.
Answer:
No. An optimal algorithm will not suffer from Belady’s anomaly because
—by definition—an optimal algorithm replaces the page that will not
be used for the longest time. Belady’s anomaly occurs when a page-
replacement algorithm evicts a page that will be needed in the immediate
future. An optimal algorithm would not have selected such a page.

8.11 Segmentation is similar to paging but uses variable-sized “pages.” Define
two segment-replacement algorithms based on FIFO and LRU page-
replacement schemes. Remember that since segments are not the same
size, the segment that is chosen to be replaced may not be big enough
to leave enough consecutive locations for the needed segment. Consider
strategies for systems where segments cannot be relocated, and those
for systems where they can.
Answer:

a. FIFO. Find the first segment large enough to accommodate the
incoming segment. If relocation is not possible and no one segment
is large enough, select a combination of segments whose memories
are contiguous, which are “closest to the first of the list” and
which can accommodate the new segment. If relocation is possible,
rearrange the memory so that the first N segments large enough for
the incoming segment are contiguous in memory. Add any leftover
space to the free-space list in both cases.



Practice Exercises 27

b. LRU. Select the segment that has not been used for the longest
period of time and that is large enough, adding any leftover space
to the free space list. If no one segment is large enough, select
a combination of the “oldest” segments that are contiguous in
memory (if relocation is not available) and that are large enough.
If relocation is available, rearrange the oldest N segments to be
contiguous in memory and replace those with the new segment.

8.12 Consider a demand-paged computer system where the degree of mul-
tiprogramming is currently fixed at four. The system was recently mea-
sured to determine utilization of CPU and the paging disk. The results
are one of the following alternatives. For each case, what is happening?
Can the degree of multiprogramming be increased to increase the CPU
utilization? Is the paging helping?

a. CPU utilization 13 percent; disk utilization 97 percent

b. CPU utilization 87 percent; disk utilization 3 percent

c. CPU utilization 13 percent; disk utilization 3 percent

Answer:

a. Thrashing is occurring.

b. CPU utilization is sufficiently high to leave things alone, and
increase degree of multiprogramming.

c. Increase the degree of multiprogramming.

8.13 We have an operating system for a machine that uses base and limit
registers, but we have modified the machine to provide a page table.
Can the page tables be set up to simulate base and limit registers? How
can they be, or why can they not be?
Answer:
The page table can be set up to simulate base and limit registers provided
that the memory is allocated in fixed-size segments. In this way, the base
of a segment can be entered into the page table and the valid/invalid bit
used to indicate that portion of the segment as resident in the memory.
There will be some problem with internal fragmentation.




