
5C H A P T E R

Process
Synchronization

Now that we have provided a grounding in synchronization theory, we
can describe how Java synchronizes the activity of threads, allowing the
programmer to develop generalized solutions to enforce mutual exclusion
between threads. When an application ensures that data remain consistent
even when accessed concurrently by multiple threads, the application is said
to be thread-safe.

5.1 Bounded Buffer

In Chapter 3, we described a shared-memory solution to the bounded-buffer
problem. This solution suffers from two disadvantages. First, both the producer
and the consumer use busy-waiting loops if the buffer is either full or empty.
Second, the variable count, which is shared by the producer and the consumer,
may develop a race condition, as described in Section Section 5.1. This section
addresses these and other problems while developing a solution using Java
synchronization mechanisms.

5.1.1 Busy Waiting and Livelock

Busy waiting was introduced in Section 5.6.2, where we examined an imple-
mentation of the acquire() and release() semaphore operations. In that
section, we described how a process could block itself as an alternative to busy
waiting. One way to accomplish such blocking in Java is to have a thread
call the Thread.yield() method. Recall from Section Section 6.1 that, when a
thread invokes the yield() method, the thread stays in the runnable state but
allows the JVM to select another runnable thread to run. The yield() method
makes more effective use of the CPU than busy waiting does.

In this instance, however, using either busy waiting or yielding may lead
to another problem, known as livelock. Livelock is similar to deadlock; both
prevent two or more threads from proceeding, but the threads are unable to
proceed for different reasons. Deadlock occurs when every thread in a set is
blocked waiting for an event that can be caused only by another blocked thread
in the set. Livelock occurs when a thread continuously attempts an action that
fails.

143

144 Chapter 5 Process Synchronization

// Producers call this method
public synchronized void insert(E item) {

while (count == BUFFER SIZE)
Thread.yield();

buffer[in] = item;
in = (in + 1) % BUFFER SIZE;
++count;

}

// Consumers call this method
public synchronized E remove() {

E item;

while (count == 0)
Thread.yield();

item = buffer[out];
out = (out + 1) % BUFFER SIZE;
--count;

return item;
}

Figure 5.1 Synchronized insert() and remove() methods.

Here is one scenario that could cause livelock. Recall that the JVM schedules
threads using a priority-based algorithm, favoring high-priority threads over
threads with lower priority. If the producer has a priority higher than that of
the consumer and the buffer is full, the producer will enter the while loop
and either busy-wait or yield() to another runnable thread while waiting for
count to be decremented to less than BUFFER SIZE. As long as the consumer
has a priority lower than that of the producer, it may never be scheduled by
the JVM to run and therefore may never be able to consume an item and free
up buffer space for the producer. In this situation, the producer is livelocked
waiting for the consumer to free buffer space. We will see shortly that there is
a better alternative than busy waiting or yielding while waiting for a desired
event to occur.

5.1.2 Race Condition

In Section Section 5.1, we saw an example of the consequences of a race
condition on the shared variable count. Figure 5.1 illustrates how Java’s
handling of concurrent access to shared data prevents race conditions.

In describing this situation, we introduce a new keyword: synchronized.
Every object in Java has associated with it a single lock. An object’s lock may
be owned by a single thread. Ordinarily, when an object is being referenced
(that is, when its methods are being invoked), the lock is ignored. When a
method is declared to be synchronized, however, calling the method requires

5.1 Bounded Buffer 145

entry set

acquire lock
object
lock

owner

Figure 5.2 Entry set.

owning the lock for the object. If the lock is already owned by another thread,
the thread calling the synchronized method blocks and is placed in the entry
set for the object’s lock. The entry set represents the set of threads waiting for
the lock to become available. If the lock is available when a synchronized
method is called, the calling thread becomes the owner of the object’s lock and
can enter the method. The lock is released when the thread exits the method.
If the entry set for the lock is not empty when the lock is released, the JVM
arbitrarily selects a thread from this set to be the owner of the lock. (When we
say “arbitrarily,” we mean that the specification does not require that threads in
this set be organized in any particular order. However, in practice, most virtual
machines order threads in the wait set according to a FIFO policy.) Figure 5.2
illustrates how the entry set operates.

If the producer calls the insert() method, as shown in Figure 5.1, and the
lock for the object is available, the producer becomes the owner of the lock; it can
then enter the method, where it can alter the value of count and other shared
data. If the consumer attempts to call the synchronized remove() method
while the producer owns the lock, the consumer will block because the lock
is unavailable. When the producer exits the insert() method, it releases the
lock. The consumer can now acquire the lock and enter the remove() method.

5.1.3 Deadlock

At first glance, this approach appears at least to solve the problem of having a
race condition on the variable count. Because both the insert() method and
the remove() method are declared synchronized, we have ensured that only
one thread can be active in either of these methods at a time. However, lock
ownership has led to another problem.

Assume that the buffer is full and the consumer is sleeping. If the producer
calls the insert() method, it will be allowed to continue, because the lock is
available. When the producer invokes the insert() method, it sees that the
buffer is full and performs the yield() method. All the while, the producer
still owns the lock for the object. When the consumer awakens and tries to call
the remove() method (which would ultimately free up buffer space for the
producer), it will block because it does not own the lock for the object. Thus,
both the producer and the consumer are unable to proceed because (1) the
producer is blocked waiting for the consumer to free space in the buffer and
(2) the consumer is blocked waiting for the producer to release the lock.

146 Chapter 5 Process Synchronization

// Producers call this method
public synchronized void insert(E item) {

while (count == BUFFER SIZE) {
try {

wait();
}
catch (InterruptedException e) { }

}

buffer[in] = item;
in = (in + 1) % BUFFER SIZE;
++count;

notify();
}

// Consumers call this method
public synchronized E remove() {

E item;

while (count == 0) {
try {

wait();
}
catch (InterruptedException e) { }

}

item = buffer[out];
out = (out + 1) % BUFFER SIZE;
--count;

notify();

return item;
}

Figure 5.3 insert() and remove() methods using wait() and notify().

By declaring each method as synchronized, we have prevented the race
condition on the shared variables. However, the presence of the yield() loop
has led to a possible deadlock.

5.1.4 Wait and Notify

Figure 5.3 addresses the yield() loop by introducing two new Java methods:
wait() and notify(). In addition to having a lock, every object also has
associated with it a wait set consisting of a set of threads. This wait set is
initially empty. When a thread enters a synchronized method, it owns the
lock for the object. However, this thread may determine that it is unable to
continue because a certain condition has not been met. That will happen, for

5.1 Bounded Buffer 147

entry set wait set

acquire lock wait
object
lock

owner

Figure 5.4 Entry and wait sets.

example, if the producer calls the insert() method and the buffer is full. The
thread then will release the lock and wait until the condition that will allow it
to continue is met, thus avoiding the previous deadlock situation.

When a thread calls the wait() method, the following happens:

1. The thread releases the lock for the object.

2. The state of the thread is set to blocked.

3. The thread is placed in the wait set for the object.

Consider the example in Figure 5.3. If the producer calls the insert()
method and sees that the buffer is full, it calls the wait() method. This call
releases the lock, blocks the producer, and puts the producer in the wait set for
the object. Because the producer has released the lock, the consumer ultimately
enters the remove()method, where it frees space in the buffer for the producer.
Figure 5.4 illustrates the entry and wait sets for a lock. (Note that wait() can
result in anInterruptedExceptionbeing thrown. We will cover this in Section
Section 5.6.)

How does the consumer thread signal that the producer may now proceed?
Ordinarily, when a thread exits a synchronized method, the departing thread
releases only the lock associated with the object, possibly removing a thread
from the entry set and giving it ownership of the lock. However, at the end
of the synchronized insert() and remove() methods, we have a call to the
method notify(). The call to notify():

1. Picks an arbitrary thread T from the list of threads in the wait set

2. Moves T from the wait set to the entry set

3. Sets the state of T from blocked to runnable

T is now eligible to compete for the lock with the other threads. Once T has
regained control of the lock, it returns from calling wait(), where it may check
the value of count again.

Next, we describe the wait() and notify() methods in terms of the
program shown in Figure 5.3. We assume that the buffer is full and the lock for
the object is available.

• The producer calls the insert() method, sees that the lock is available,
and enters the method. Once in the method, the producer determines that
the buffer is full and calls wait(). The call to wait() releases the lock for

148 Chapter 5 Process Synchronization

the object, sets the state of the producer to blocked, and puts the producer
in the wait set for the object.

• The consumer ultimately calls and enters the remove() method, as the
lock for the object is now available. The consumer removes an item from
the buffer and calls notify(). Note that the consumer still owns the lock
for the object.

• The call to notify() removes the producer from the wait set for the
object, moves the producer to the entry set, and sets the producer’s state
to runnable.

• The consumer exits the remove() method. Exiting this method releases
the lock for the object.

• The producer tries to reacquire the lock and is successful. It resumes
execution from the call to wait(). The producer tests the while loop,
determines that room is available in the buffer, and proceeds with the
remainder of the insert() method. If no thread is in the wait set for
the object, the call to notify() is ignored. When the producer exits the
method, it releases the lock for the object.

The BoundedBuffer class shown in Figure 5.5 represents the complete
solution to the bounded-buffer problem using Java synchronization. This class

public class BoundedBuffer<E> implements Buffer<E>
{

private static final int BUFFER SIZE = 5;

private int count, in, out;
private E[] buffer;

public BoundedBuffer() {
// buffer is initially empty
count = 0;
in = 0;
out = 0;
buffer = (E[]) new Object[BUFFER SIZE];

}

public synchronized void insert(E item) {
// Figure Figure 5.3

}

public synchronized E remove() {
// Figure Figure 5.3

}
}

Figure 5.5 Bounded buffer.

5.2 Multiple Notifications 149

/**
* myNumber is the number of the thread
* that wishes to do some work
*/

public synchronized void doWork(int myNumber) {
while (turn != myNumber) {

try {
wait();

}
catch (InterruptedException e) { }

}

// Do some work for awhile . . .

/**
* Finished working. Now indicate to the
* next waiting thread that it is their
* turn to do some work.
*/
turn = (turn + 1) % 5;

notify();
}

Figure 5.6 doWork() method.

may be substituted for the BoundedBuffer class used in the semaphore-based
solution to this problem in Section Section 5.7.1.

5.2 Multiple Notifications

As described in Section Section 5.1.4, the call to notify() arbitrarily selects
a thread from the list of threads in the wait set for an object. This approach
works fine when only one thread is in the wait set, but consider what can
happen when there are multiple threads in the wait set and more than one
condition for which to wait. It is possible that a thread whose condition has
not yet been met will be the thread that receives the notification.

Suppose, for example, that there are five threads {T0, T1, T2, T3, T4} and
a shared variable turn indicating which thread’s turn it is. When a thread
wishes to do work, it calls the doWork() method in Figure 5.6. Only the thread
whose number matches the value of turn can proceed; all other threads must
wait their turn.

Assume the following:

• turn = 3.

• T1, T2, and T4 are in the wait set for the object.

• T3 is currently in the doWork() method.

150 Chapter 5 Process Synchronization

When thread T3 is done, it sets turn to 4 (indicating that it is T4’s turn)
and calls notify(). The call to notify() arbitrarily picks a thread from the
wait set. If T2 receives the notification, it resumes execution from the call to
wait() and tests the condition in the while loop. T2 sees that this is not its
turn, so it calls wait() again. Ultimately, T3 and T0 will call doWork() and
will also invoke the wait() method, since it is the turn for neither T3 nor T0.
Now, all five threads are blocked in the wait set for the object. Thus, we have
another deadlock to handle.

Because the call to notify() arbitrarily picks a single thread from the wait
set, the developer has no control over which thread is chosen. Fortunately, Java
provides a mechanism that allows all threads in the wait set to be notified. The
notifyAll() method is similar to notify(), except that every waiting thread
is removed from the wait set and placed in the entry set. If the call to notify()
in doWork() is replaced with a call to notifyAll(), when T3 finishes and sets
turn to 4, it calls notifyAll(). This call has the effect of removing T1, T2,
and T4 from the wait set. The three threads then compete for the object’s lock
once again. Ultimately, T1 and T2 call wait(), and only T4 proceeds with the
doWork() method.

In sum, the notifyAll() method is a mechanism that wakes up all
waiting threads and lets the threads decide among themselves which of them

public class Database implements ReadWriteLock
{

private int readerCount;
private boolean dbWriting;

public Database() {
readerCount = 0;
dbWriting = false;

}

public synchronized void acquireReadLock() {
// Figure Figure 5.8

}

public synchronized void releaseReadLock() {
// Figure Figure 5.8

}

public synchronized void acquireWriteLock() {
// Figure Figure 5.9

}

public synchronized void releaseWriteLock() {
// Figure Figure 5.9

}
}

Figure 5.7 Solution to the readers–writers problem using Java synchronization.

5.3 A Solution to the Readers–Writers Problem 151

public synchronized void acquireReadLock() {
while (dbWriting == true) {

try {
wait();

}
catch(InterruptedException e) { }

}

++readerCount;
}

public synchronized void releaseReadLock() {
--readerCount;

/**
* The last reader indicates that
* the database is no longer being read.
*/
if (readerCount == 0)

notify();
}

Figure 5.8 Methods called by readers.

should run next. In general, notifyAll() is a more expensive operation
than notify() because it wakes up all threads, but it is regarded as a more
conservative strategy appropriate for situations in which multiple threads may
be in the wait set for an object.

In the following section, we look at a Java-based solution to the readers–
writers problem that requires the use of both notify() and notifyAll().

5.3 A Solution to the Readers–Writers Problem

We can now provide a solution to the first readers–writers problem by using
Java synchronization. The methods called by each reader and writer thread
are defined in the Database class in Figure 5.7. The readerCount keeps
track of the number of readers; a value > 0 indicates that the database is
currently being read. dbWriting is a boolean variable indicating whether
the database is currently being accessed by a writer. acquireReadLock(),
releaseReadLock(), acquireWriteLock(), and releaseWriteLock() are
all declared as synchronized to ensure mutual exclusion to the shared
variables.

When a writer wishes to begin writing, it first checks whether the database
is currently being either read or written. If the database is being read or written,
the writer enters the wait set for the object. Otherwise, it sets dbWriting
to true. When a writer is finished, it sets dbWriting to false. When a
reader invokes acquireReadLock(), it first checks whether the database is
currently being written. If the database is unavailable, the reader enters the
wait set for the object; otherwise, it increments readerCount. The final reader

152 Chapter 5 Process Synchronization

public synchronized void acquireWriteLock() {
while (readerCount > 0 || dbWriting == true) {

try {
wait();

}
catch(InterruptedException e) { }

}

/**
* Once there are no readers or a writer,
* indicate that the database is being written.
*/
dbWriting = true;

}

public synchronized void releaseWriteLock() {
dbWriting = false;

notifyAll();
}

Figure 5.9 Methods called by writers.

calling releaseReadLock() invokes notify(), thereby notifying a waiting
writer. When a writer invokes releaseWriteLock(), however, it calls the
notifyAll() method rather than notify(). Consider the effect on readers.
If several readers wish to read the database while it is being written, and the
writer invokes notify() once it has finished writing, only one reader will
receive the notification. Other readers will remain in the wait set even though
the database is available for reading. By invoking notifyAll(), a departing
writer is ensured of notifying all waiting readers.

5.4 Block Synchronization

The amount of time between when a lock is acquired and when it is released
is defined as the scope of the lock. Java also allows blocks of code to be
declared as synchronized, because a synchronized method that has only
a small percentage of its code manipulating shared data may yield a scope
that is too large. In such an instance, it may be better to synchronize only
the block of code that manipulates shared data than to synchronize the entire
method. Such a design results in a smaller lock scope. Thus, in addition to
declaring synchronized methods, Java also allows block synchronization, as
illustrated in Figure 5.10. Access to the criticalSection() method in Figure
5.10 requires ownership of the lock for the mutexLock object.

We can also use the wait() and notify() methods in a synchronized
block. The only difference is that they must be invoked with the same object
that is being used for synchronization. This approach is shown in Figure 5.11.

5.5 Synchronization Rules 153

Object mutexLock = new Object();
. . .
public void someMethod() {

nonCriticalSection();

synchronized(mutexLock) {
criticalSection();

}

remainderSection();
}

Figure 5.10 Block synchronization.

5.5 Synchronization Rules

The synchronized keyword is a straightforward construct, but it is important
to know a few rules about its behavior.

1. A thread that owns the lock for an object can enter another synchronized
method (or block) for the same object. This is known as a recursive or
reentrant lock.

2. A thread can nestsynchronizedmethod invocations for different objects.
Thus, a thread can simultaneously own the lock for several different
objects.

3. If a method is not declared synchronized, then it can be invoked
regardless of lock ownership, even while another synchronizedmethod
for the same object is executing.

4. If the wait set for an object is empty, then a call to notify() or
notifyAll() has no effect.

Object mutexLock = new Object();
. . .
synchronized(mutexLock) {

try {
mutexLock.wait();

}
catch (InterruptedException ie) { }

}

synchronized(mutexLock) {
mutexLock.notify();

}

Figure 5.11 Block synchronization using wait() and notify().

154 Chapter 5 Process Synchronization

5. wait(), notify(), and notifyAll() may only be invoked from syn-
chronized methods or blocks; otherwise, an IllegalMonitorStateEx-
ception is thrown.

It is also possible to declare static methods as synchronized. This is
because, along with the locks that are associated with object instances, there
is a single class lock associated with each class. Thus, for a given class, there
can be several object locks, one per object instance. However, there is only one
class lock.

In addition to using the class lock to declare static methods as synchro-
nized, we can use it in a synchronized block by placing "class name.class"
within the synchronized statement. For example, if we wished to use a syn-
chronized block with the class lock for the SomeObject class, we would use
the following:

synchronized(SomeObject.class) {
/**
* synchronized block of code
*/

}

5.6 Handling InterruptedException

Note that invoking the wait() method requires placing it in a try-catch
block, as wait() may throw an InterruptedException. Recall from Chapter
4 that the interrupt() method is the preferred technique for interrupting a
thread in Java. When interrupt() is invoked on a thread, the interruption
status of that thread is set. A thread can check its interruption status using the
isInterrupted() method, which returns true if its interruption status is set.

The wait() method also checks the interruption status of a thread. If it is
set, wait() will throw an InterruptedException. This allows interruption
of a thread that is blocked in the wait set. (It should also be noted that once
an InterruptedException is thrown, the interrupted status of the thread is
cleared.) For code clarity and simplicity, we choose to ignore this exception in
our code examples. That is, all calls to wait() appear as:

try {
wait();

}
catch (InterruptedException ie) { /* ignore */ }

However, if we choose to handle InterruptedException, we permit the
interruption of a thread blocked in a wait set. Doing so allows more robust
multithreaded applications, as it provides a mechanism for interrupting a
thread that is blocked trying to acquire a mutual exclusion lock. One strategy
is to allow the InterruptedException to propagate. That is, in methods
where wait() is invoked, we first remove the try-catch blocks when calling
wait() and declare such methods as throwing InterruptedException.
By doing this, we are allowing the InterruptedException to propagate
from the method where wait() is being invoked. However, allowing this

5.7 Concurrency Features in Java 155

exception to propagate requires placing calls to such methods within try-
catch (InterruptedException) blocks.

5.7 Concurrency Features in Java

Prior to Java 1.5, the only concurrency features available in Java were the
synchronized, wait(), and notify() commands, which are based on single
locks for each object. Java 1.5 introduced a rich API consisting of several
concurrency features, including various mechanisms for synchronizing con-
current threads. In this section, we cover (1) reentrant locks, (2) semaphores,
and (3) condition variables available in the java.util.concurrent and
java.util.concurrent.lockspackages. Readers interested in the additional
features of these packages are encouraged to consult the Java API.

5.7.1 Reentrant Locks

Perhaps the simplest locking mechanism available in the API is the Reentrant-
Lock. In many ways, a ReentrantLock acts like the synchronized statement
described in Section Section 5.1.2: a ReentrantLock is owned by a single
thread and is used to provide mutually exclusive access to a shared resource.
However, the ReentrantLock provides several additional features, such as
setting a fairness parameter, which favors granting the lock to the longest-
waiting thread. (Recall from Section Section 5.1.2 that the specification for the
JVM does not indicate that threads in the wait set for an object lock are to be
ordered in any specific fashion.)

A thread acquires a ReentrantLock lock by invoking its lock() method.
If the lock is available—or if the thread invoking lock() already owns it,
which is why it is termed reentrant—lock() assigns the invoking thread lock
ownership and returns control. If the lock is unavailable, the invoking thread
blocks until it is ultimately assigned the lock when its owner invokesunlock().
ReentrantLock implements the Lock interface; its usage is as follows:

Lock key = new ReentrantLock();

key.lock();
try {

// critical section
}
finally {

key.unlock();
}

The programming idiom of using try and finally requires a bit of
explanation. If the lock is acquired via the lock() method, it is important that
the lock be similarly released. By enclosing unlock() in a finally clause,
we ensure that the lock is released once the critical section completes or
if an exception occurs within the try block. Notice that we do not place
the call to lock() within the try clause, as lock() does not throw any
checked exceptions. Consider what happens if we place lock() within the
try clause and an unchecked exception occurs when lock() is invoked (such

156 Chapter 5 Process Synchronization

as OutofMemoryError): The finally clause triggers the call to unlock(),
which then throws the unchecked IllegalMonitorStateException, as the
lock was never acquired. This IllegalMonitorStateException replaces
the unchecked exception that occurred when lock() was invoked, thereby
obscuring the reason why the program initially failed.

5.7.2 Semaphores

The Java 5 API also provides a counting semaphore, as described in Section
Section 5.6. The constructor for the semaphore appears as

Semaphore(int value);

where value specifies the initial value of the semaphore (a negative value is
allowed). The acquire() method throws an InterruptedException if the
acquiring thread is interrupted (Section Section 5.6). The following example
illustrates using a semaphore for mutual exclusion:

Semaphore sem = new Semaphore(1);

try {
sem.acquire();
// critical section

}
catch (InterruptedException ie) { }
finally {

sem.release();
}

Notice that we place the call to release() in the finally clause to ensure that
the semaphore is released.

5.7.3 Condition Variables

The last utility we cover in the Java API is the condition variable. Just as
the ReentrantLock (Section Section 5.7.1) is similar to Java’s synchronized
statement, condition variables provide functionality similar to the wait(),
notify(), and notifyAll()methods. Therefore, to provide mutual exclusion
to both, a condition variable must be associated with a reentrant lock.

We create a condition variable by first creating a ReentrantLock and
invoking its newCondition() method, which returns a Condition object
representing the condition variable for the associated ReentrantLock. This
is illustrated in the following statements:

Lock key = new ReentrantLock();
Condition condVar = key.newCondition();

Once the condition variable has been obtained, we can invoke its await()
and signal() methods, which function in the same way as the wait() and
signal() commands described in Section Section 5.8.

As mentioned, reentrant locks and condition variables in the Java API func-
tion similarly to the synchronized, wait(), and notify() statements. How-
ever, one advantage to using the features available in the API is they often pro-

Exercises 157

vide more flexibility and control than their synchronized/wait()/notify()
counterparts. Another distinction concerns Java’s locking mechanism, in which
each object has its own lock. In many ways, this lock acts as a monitor. Every
Java object thus has an associated monitor, and a thread can acquire an object’s
monitor by entering a synchronized method or block.

Let’s look more closely at this distinction. Recall that, with monitors as
described in Section Section 5.8, the wait() and signal() operations can be
applied to named condition variables, allowing a thread to wait for a specific
condition or to be notified when a specific condition has been met. At the
language level, Java does not provide support for named condition variables.
Each Java monitor is associated with just one unnamed condition variable,
and the wait(), notify(), and notifyAll() operations apply only to this
single condition variable. When a Java thread is awakened via notify() or
notifyAll(), it receives no information as to why it was awakened. It is up to
the reactivated thread to check for itself whether the condition for which it was
waiting has been met. The doWork() method shown in Figure 5.6 highlights
this issue; notifyAll() must be invoked to awaken all waiting threads, and
—once awake—each thread must check for itself if the condition it has been
waiting for has been met (that is, if it is that thread’s turn).

We further illustrate this distinction by rewriting the doWork() method in
Figure 5.6 using condition variables. We first create a ReentrantLock and five
condition variables (representing the conditions the threads are waiting for) to
signal the thread whose turn is next. This is shown below:

Lock lock = new ReentrantLock();
Condition[] condVars = new Condition[5];

for (int i = 0; i < 5; i++)
condVars[i] = lock.newCondition();

The modified doWork() method is shown in Figure 5.12. Notice that
doWork() is no longer declared as synchronized, since the ReentrantLock
provides mutual exclusion. When a thread invokes await() on the condition
variable, it releases the associated ReentrantLock, allowing another thread to
acquire the mutual exclusion lock. Similarly, when signal() is invoked, only
the condition variable is signaled; the lock is released by invoking unlock().

Exercises

5.1 The Singleton design pattern ensures that only one instance of an object
is created. For example, assume we have a class calledSingleton and we
wish to allow only one instance of it. Rather than creating a Singleton
object using its constructor, we instead declare the constructor as
private and provide a public static method—such as getInstance()
—for object creation:

Singleton sole = Singleton.getInstance();

Figure 5.13 provides one strategy for implementing the Singleton
pattern. The idea behind this approach is to use lazy initialization,

158 Chapter 5 Process Synchronization

/**
* myNumber is the number of the thread
* that wishes to do some work
*/

public void doWork(int myNumber) {
lock.lock();

try {
/**
* If it’s not my turn, then wait
* until I’m signaled
*/

if (myNumber != turn)
condVars[myNumber].await();

// Do some work for awhile . . .

/**
* Finished working. Now indicate to the
* next waiting thread that it is their
* turn to do some work.
*/

turn = (turn + 1) % 5;
condVars[turn].signal();

}
catch (InterruptedException ie) { }
finally {

lock.unlock();
}

}

Figure 5.12 doWork() method with condition variables.

whereby we create an instance of the object only when it is needed—
that is, when getInstance() is first called. However, Figure 5.13 suffers
from a race condition. Identify the race condition.

Figure 5.14 shows an alternative strategy that addresses the race
condition by using the double-checked locking idiom. Using this
strategy, we first check whether instance is null. If it is, we next
obtain the lock for the Singleton class and then double-check whether
instance is still null before creating the object. Does this strategy result
in any race conditions? If so, identify and fix them. Otherwise, illustrate
why this code example is thread-safe.

Programming Problems 159

public class Singleton {
private static Singleton instance = null;

private Singleton { }

public static Singleton getInstance() {
if (instance == null)

instance = new Singleton();

return instance;
}

}
Figure 5.13 First attempt at Singleton design pattern.

Programming Problems

5.2 Exercise 4.6 requires the main thread to wait for the sorting and merge
threads by using the join() method. Modify your solution to this
exercise so that it uses semaphores rather than the join() method.
(Hint: We recommend carefully reading through the Java API on the
constructor for Semaphore objects.)

5.3 Servers can be designed to limit the number of open connections. For
example, a server may wish to have only N socket connections open at
any point in time. After N connections have been made, the server will
not accept another incoming connection until an existing connection
is released. In the source code download, there is a program named
TimedServer.java that listens to port 2500. When a connection is
made (via telnet or the supplied client program TimedClient.java),

public class Singleton {
private static Singleton instance = null;

private Singleton { }

public static Singleton getInstance() {
if (instance == null) {

synchronized(Singleton.class) {
if (instance == null)

instance = new Singleton();
}

}

return instance;
}

}
Figure 5.14 Singleton design pattern using double-checked locking.

160 Chapter 5 Process Synchronization

the server creates a new thread that maintains the connection for 10
seconds (writing the number of seconds remaining while the connection
remains open). At the end of 10 seconds, the thread closes the connection.
Currently, TimedServer.java will accept an unlimited number of
connections. Using semaphores, modify this program so that it limits
the number of concurrent connections.

5.4 Assume that a finite number of resources of a single resource type must
be managed. Processes may ask for a number of these resources and
—once finished—will return them. As an example, many commercial
software packages provide a given number of licenses, indicating the
number of applications that may run concurrently. When the application
is started, the license count is decremented. When the application is
terminated, the license count is incremented. If all licenses are in use,
requests to start the application are denied. Such requests will only be
granted when an existing license holder terminates the application and
a license is returned.

The following Java class is used to manage a finite number of
instances of an available resource. Note that when a process wishes to
obtain a number of resources, it invokes the decreaseCount() method.
Similarly, when a process wants to return a number of resources, it calls
increaseCount().

public class Manager
{

public static final int MAX RESOURCES = 5;
private int availableResources = MAX RESOURCES;

/**
* Decrease availableResources by count resources.
* return 0 if sufficient resources available,
* otherwise return -1
*/

public int decreaseCount(int count) {
if (availableResources < count)

return -1;
else {

availableResources -= count;

return 0;
}

/* Increase availableResources by count resources. */
public void increaseCount(int count) {

availableResources += count;
}

}

However, the preceding program segment produces a race condition.
Do the following:

Programming Problems 161

a. Identify the data involved in the race condition.

b. Identify the location (or locations) in the code where the race
condition occurs.

c. Using Java synchronization, fix the race condition. Also modify
decreaseCount() so that a thread blocks if there aren’t sufficient
resources available.

5.5 Implement the Channel interface (Figure 3.7) so that the send() and
receive() methods are blocking. That is, a thread invoking send()
will block if the channel is full. If the channel is empty, a thread invoking
receive() will block. Doing this will require storing the messages in
a fixed-length array. Ensure that your implementation is thread-safe
(using Java synchronization) and that the messages are stored in FIFO
order.

5.6 A barrier is a thread-synchronization mechanism that allows several
threads to run for a period and then forces all threads to wait until all
have reached a certain point. Once all threads have reached this point
(the barrier), they may all continue. An interface for a barrier appears as
follows:

public interface Barrier
{

/**
* Each thread calls this method when it reaches
* the barrier. All threads are released to continue
* processing when thelast thread calls this method.
*/

public void waitForOthers();

/**
* Release all threads from waiting for the barrier.
* Any future calls to waitForOthers() will not wait
* until the Barrier is set again with a call
* to the constructor.
*/

public void freeAll();
}

The following code segment establishes a barrier and creates 10 Worker
threads that will synchronize according to the barrier:

public static final int THREAD COUNT = 10;

Barrier jersey = new BarrierImpl(THREAD COUNT);
for (int i = 0; i < THREAD COUNT; i++)

(new Worker(jersey)).start();

162 Chapter 5 Process Synchronization

Note that the barrier must be initialized to the number of threads that
are being synchronized and that each thread has a reference to the same
barrier object—jersey. Each Worker will run as follows:

// All threads have access to this barrier
Barrier jersey;

// do some work for a while . . .

// now wait for the others
jersey.waitForOthers();

// now do more work . . .

When a thread invokes the method waitForOthers(), it will block until
all threads have reached this method (the barrier). Once all threads have
reached the method, they may all proceed with the remainder of their
code. The freeAll() method bypasses the need to wait for threads to
reach the barrier; as soon as freeAll() is invoked, all threads waiting
for the barrier are released.

Implement the Barrier interface using Java synchronization.

5.7 The Sleeping-Barber Problem. A barbershop consists of a waiting room
with n chairs and a barber room with one barber chair. If there are no
customers to be served, the barber goes to sleep. If a customer enters
the barbershop and all chairs are occupied, then the customer leaves the
shop. If the barber is busy but chairs are available, then the customer sits
in one of the free chairs. If the barber is asleep, the customer wakes up
the barber. Write a program to coordinate the barber and the customers
using Java synchronization.

Programming Projects

The projects below deal with three distinct topics—designing a pid man-
ager, designing a thread pool, and implementing a solution to the dining-
philosophers problem using Java’s condition variables.

Project 1: Designing a pid Manager

A pid manager is responsible for managing process identifiers (pids). When
a process is first created, it is assigned a unique pid by the pid manager. The
pid is returned to the pid manager when the process completes execution. The
pid manager may later reassign this pid. Process identifiers are discussed more
fully in Section Section 3.3.1. What is most important here is to recognize that
process identifiers must be unique; no two active processes can have the same
pid.

The Java interface shown in Figure 5.15 identifies the basic methods for
obtaining and releasing a pid. Process identifiers are assigned within the

Programming Projects 163

/**
* An interface for a PID manager.
*
* The range of allowable PID’s is
* MIN PID .. MAX PID (inclusive)
*
* An implementation of this interface
* must ensure thread safety.
*/

public interface PIDManager
{

/** The range of allowable PIDs (inclusive) */
public static final int MIN PID = 4;
public static final int MAX PID = 127;

/**
* Return a valid PID or -1 if
* none are available
*/

public int getPID();

/**
* Return a valid PID, possibly blocking the
* calling process until one is available.
*/

public int getPIDWait();

/**
* Release the pid
* Throw an IllegalArgumentException if the pid
* is outside of the range of PID values.
*/

public void releasePID(int pid);
}

Figure 5.15 Java interface for obtaining and releasing a pid.

range MIN PID to MAX PID (inclusive). The fundamental difference between
getPID() and getPIDWait() is that if no pids are available, getPID() returns
-1, whereas getPIDWait() blocks the calling process until a pid becomes
available. As with most kernel data, the data structure for maintaining a set of
pids must be free from race conditions and deadlock. One possible result from
a race condition is that the same pid will be concurrently assigned to more than
one process. (However, a pid can be reused once it has been returned via the
call to releasePID().) To achieve blocking behavior in getPIDWait(), you
may use any of the Java-based synchronization mechanisms discussed in this
chapter.
Project 2: Designing a Thread Pool

164 Chapter 5 Process Synchronization

Create a thread pool (see Chapter 4) using Java synchronization. Your thread
pool will implement the following API:

ThreadPool() Create a default-sized thread pool
ThreadPool(int size) Create a thread pool of size size
void add(Runnable task) Add a task to be performed by a

thread in the pool
void stopPool() Stop all threads in the pool

Your pool will first create a number of idle threads that await work.
Work will be submitted to the pool via the add() method, which adds a
task implementing the Runnable interface. The add() method will place the
Runnable task into a queue. Once a thread in the pool becomes available for
work, it will check the queue for any Runnable tasks. If there are such tasks,
the idle thread will remove the task from the queue and invoke its run()
method. If the queue is empty, the idle thread will wait to be notified when
work becomes available. (The add() method will perform a notify() when
it places a Runnable task into the queue to possibly awaken an idle thread
awaiting work.) The stopPool() method will stop all threads in the pool
by invoking their interrupt() method (Section Section 4.5). This, of course,
requires that Runnable tasks being executed by the thread pool check their
interruption status.

There are many different ways to test your solution to this problem. One
suggestion is to modify your answer to Exercise Exercise 3.3 so that the server
can respond to each client request by using a thread pool.

Project 3: Dining Philosophers

In Section Section 5.8.2, we provide an outline of a solution to the dining-
philosophers problem using monitors. This exercise will require implementing
this solution using Java’s condition variables.

Begin by creating five philosophers, each identified by a number 0...4.
Each philosopher runs as a separate thread. Philosophers alternate between
thinking and eating. When a philosopher wishes to eat, it invokes the method
takeForks(philNumber), where philNumber identifies the number of the
philosopher wishing to eat. When a philosopher finishes eating, it invokes
returnForks(philNumber).

Your solution will implement the following interface:

public interface DiningServer
{

/* Called by a philosopher when it wishes to eat */
public void takeForks(int philNumber);

/* Called by a philosopher when it is finished eating */
public void returnForks(int philNumber);

}

Programming Projects 165

The implementation of the interface follows the outline of the solution provided
in Figure 5.18. Use Java’s condition variables to synchronize the activity of the
philosophers and prevent deadlock.

	Threads
	Creating Java Threads
	The JVM and the Host Operating System
	Java Thread States
	Solution to the Producer – Consumer Problem
	Thread Cancellation
	Thread Pools
	Thread-Specific Data
	Exercises

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

