
18C H A P T E R

The Linux
System

Practice Exercises

18.1 Dynamically loadable kernel modules give flexibility when drivers are
added to a system, but do they have disadvantages too? Under what
circumstances would a kernel be compiled into a single binary file, and
when would it be better to keep it split into modules? Explain your
answer.
Answer:
There are two principal drawbacks with the use of modules. The first is
size: module management consumes unpageable kernel memory, and
a basic kernel with a number of modules loaded will consume more
memory than an equivalent kernel with the drivers compiled into the
kernel image itself. This can be a very significant issue on machines
with limited physical memory.

The second drawback is that modules can increase the complexity
of the kernel bootstrap process. It is hard to load up a set of modules
from disk if the driver needed to access that disk itself a module that
needs to be loaded. As a result, managing the kernel bootstrap with
modules can require extra work on the part of the administrator: the
modules required to bootstrap need to be placed into a ramdisk image
that is loaded alongside the initial kernel image when the system is
initialized.

In certain cases it is better to use a modular kernel, and in other
cases it is better to use a kernel with its device drivers prelinked.
Where minimizing the size of the kernel is important, the choice will
depend on how often the various device drivers are used. If they are
in constant use, then modules are unsuitable. This is especially true
where drivers are needed for the boot process itself. On the other hand,
if some drivers are not always needed, then the module mechanism
allows those drivers to be loaded and unloaded on demand, potentially
offering a net saving in physical memory.

Where a kernel is to be built that must be usable on a large variety
of very different machines, then building it with modules is clearly
preferable to using a single kernel with dozens of unnecessary drivers

61



62 Chapter 18 The Linux System

consuming memory. This is particularly the case for commercially
distributed kernels, where supporting the widest variety of hardware
in the simplest manner possible is a priority.

However, if a kernel is being built for a single machine whose
configuration is known in advance, then compiling and using modules
may simply be an unnecessary complexity. In cases like this, the use of
modules may well be a matter of taste.

18.2 Multithreading is a commonly used programming technique. Describe
three different ways to implement threads, and compare these three
methods with the Linux clone() mechanism. When might using each
alternative mechanism be better or worse than using clones?
Answer:
Thread implementations can be broadly classified into two groups:
kernel-based threads and user-mode threads. User-mode thread pack-
ages rely on some kernel support—they may require timer interrupt
facilities, for example—but the scheduling between threads is not per-
formed by the kernel but by some library of user-mode code. Multiple
threads in such an implementation appear to the operating system as a
single execution context. When the multithreaded process is running,
it decides for itself which of its threads to execute, using non-local
jumps to switch between threads according to its own preemptive or
non-preemptive scheduling rules.

Alternatively, the operating system kernel may provide support for
threads itself. In this case, the threads may be implemented as separate
processes that happen to share a complete or partial common address
space, or they may be implemented as separate execution contexts
within a single process. Whichever way the threads are organized, they
appear as fully independent execution contexts to the application.

Hybrid implementations are also possible, where a large number of
threads are made available to the application using a smaller number
of kernel threads. Runnable user threads are run by the first available
kernel thread.

In Linux, threads are implemented within the kernel by a clone
mechanism that creates a new process within the same virtual address
space as the parent process. Unlike some kernel-based thread packages,
the Linux kernel does not make any distinction between threads and
processes: a thread is simply a process that did not create a new virtual
address space when it was initialized.

The main advantage of implementing threads in the kernel rather
than in a user-mode library are that:

• kernel-threaded systems can take advantage of multiple processors
if they are available; and

• if one thread blocks in a kernel service routine (for example, a
system call or page fault), other threads are still able to run.

A lesser advantage is the ability to assign different security attributes
to each thread.

User-mode implementations do not have these advantages. Because
such implementations run entirely within a single kernel execution



Practice Exercises 63

context, only one thread can ever be running at once, even if multiple
CPUs are available. For the same reason, if one thread enters a system
call, no other threads can run until that system call completes. As
a result, one thread doing a blocking disk read will hold up every
thread in the application. However, user-mode implementations do
have their own advantages. The most obvious is performance: invoking
the kernel’s own scheduler to switch between threads involves entering
a new protection domain as the CPU switches to kernel mode, whereas
switching between threads in user mode can be achieved simply by
saving and restoring the main CPU registers. User-mode threads may
also consume less system memory: most UNIX systems will reserve at
least a full page for a kernel stack for each kernel thread, and this stack
may not be pageable.

The hybrid approach, implementing multiple user threads over
a smaller number of kernel threads, allows a balance between these
tradeoffs to be achieved. The kernel threads will allow multiple threads
to be in blocking kernel calls at once and will permit running on
multiple CPUs, and user-mode thread switching can occur within each
kernel thread to perform lightweight threading without the overheads
of having too many kernel threads. The downside of this approach
is complexity: giving control over the tradeoff complicates the thread
library’s user interface.

18.3 The Linux kernel does not allow paging out of kernel memory. What
effect does this restriction have on the kernel’s design? What are two
advantages and two disadvantages of this design decision?
Answer:
The primary impact of disallowing paging of kernel memory in
Linux is that the non-preemptability of the kernel is preserved. Any
process taking a page fault, whether in kernel or in user mode, risks
being rescheduled while the required data is paged in from disk.
Because the kernel can rely on not being rescheduled during access
to its primary data structures, locking requirements to protect the
integrity of those data structures are very greatly simplified. Although
design simplicity is a benefit in itself, it also provides an important
performance advantage on uniprocessor machines due to the fact that
it is not necessary to do additional locking on most internal data
structures.

There are a number of disadvantages to the lack of pageable kernel
memory, however. First of all, it imposes constraints on the amount of
memory that the kernel can use. It is unreasonable to keep very large
data structures in non-pageable memory, since that represents physical
memory that absolutely cannot be used for anything else. This has two
impacts: first of all, the kernel must prune back many of its internal
data structures manually, instead of being able to rely on a single
virtual-memory mechanism to keep physical memory usage under
control. Second, it makes it infeasible to implement certain features
that require large amounts of virtual memory in the kernel, such as
the /tmp-filesystem (a fast virtual-memory-based file system found on
some UNIX systems).



64 Chapter 18 The Linux System

Note that the complexity of managing page faults while running
kernel code is not an issue here. The Linux kernel code is already able
to deal with page faults: it needs to be able to deal with system calls
whose arguments reference user memory that may be paged out to
disk.

18.4 Discuss three advantages of dynamic (shared) linkage of libraries
compared with static linkage. Describe two cases in which static linkage
is preferable.
Answer:
The primary advantages of shared libraries are that they reduce
the memory and disk space used by a system, and they enhance
maintainability.

When shared libraries are being used by all running programs,
there is only one instance of each system library routine on disk, and
at most one instance in physical memory. When the library in question
is one used by many applications and programs, then the disk and
memory savings can be quite substantial. In addition, the startup time
for running new programs can be reduced, since many of the common
functions needed by that program are likely to be already loaded into
physical memory.

Maintainability is also a major advantage of dynamic linkage over
static. If all running programs use a shared library to access their
system library routines, then upgrading those routines, either to add
new functionality or to fix bugs, can be done simply by replacing that
shared library. There is no need to recompile or relink any applications;
any programs loaded after the upgrade is complete will automatically
pick up the new versions of the libraries.

There are other advantages too. A program that uses shared libraries
can often be adapted for specific purposes simply by replacing one or
more of its libraries, or even (if the system allows it, and most UNIXs
including Linux do) adding a new one at run time. For example, a
debugging library can be substituted for a normal one to trace a problem
in an application. Shared libraries also allow program binaries to be
linked against commercial, proprietary library code without actually
including any of that code in the program’s final executable file. This is
important because on most UNIX systems, many of the standard shared
libraries are proprietary, and licensing issues may prevent including
that code in executable files to be distributed to third parties.

In some places, however, static linkage is appropriate. One example
is in rescue environments for system administrators. If a system
administrator makes a mistake while installing any new libraries, or if
hardware develops problems, it is quite possible for the existing shared
libraries to become corrupt. As a result, often a basic set of rescue
utilities are linked statically, so that there is an opportunity to correct
the fault without having to rely on the shared libraries functioning
correctly.

There are also performance advantages that sometimes make static
linkage preferable in special cases. For a start, dynamic linkage does
increase the startup time for a program, as the linking must now be



Practice Exercises 65

done at run time rather than at compile time. Dynamic linkage can also
sometimes increase the maximum working set size of a program (the
total number of physical pages of memory required to run the program).
In a shared library, the user has no control over where in the library
binary file the various functions reside. Since most functions do not
precisely fill a full page or pages of the library, loading a function will
usually result in loading in parts of the surrounding functions, too. With
static linkage, absolutely no functions that are not referenced (directly
or indirectly) by the application need to be loaded into memory.

Other issues surrounding static linkage include ease of distribution:
it is easier to distribute an executable file with static linkage than
with dynamic linkage if the distributor is not certain whether the
recipient will have the correct libraries installed in advance. There may
also be commercial restrictions against redistributing some binaries as
shared libraries. For example, the license for the UNIX “Motif” graphical
environment allows binaries using Motif to be distributed freely as long
as they are statically linked, but the shared libraries may not be used
without a license.

18.5 Compare the use of networking sockets with the use of shared memory
as a mechanism for communicating data between processes on a single
computer. What are the advantages of each method? When might each
be preferred?
Answer:
Using network sockets rather than shared memory for local commu-
nication has a number of advantages. The main advantage is that the
socket programming interface features a rich set of synchronization
features. A process can easily determine when new data has arrived on
a socket connection, how much data is present, and who sent it. Pro-
cesses can block until new data arrives on a socket, or they can request
that a signal be delivered when data arrives. A socket also manages
separate connections. A process with a socket open for receive can
accept multiple connections to that socket and will be told when new
processes try to connect or when old processes drop their connections.

Shared memory offers none of these features. There is no way for a
process to determine whether another process has delivered or changed
data in shared memory other than by going to look at the contents
of that memory. It is impossible for a process to block and request a
wakeup when shared memory is delivered, and there is no standard
mechanism for other processes to establish a shared memory link to an
existing process.

However, shared memory has the advantage that it is very much
faster than socket communications in many cases. When data is sent
over a socket, it is typically copied from memory to memory multiple
times. Shared memory updates require no data copies: if one process
updates a data structure in shared memory, that update is immediately
visible to all other processes sharing that memory. Sending or receiving
data over a socket requires that a kernel system service call be made
to initiate the transfer, but shared memory communication can be
performed entirely in user mode with no transfer of control required.



66 Chapter 18 The Linux System

Socket communication is typically preferred when connection man-
agement is important or when there is a requirement to synchronize
the sender and receiver. For example, server processes will usually
establish a listening socket to which clients can connect when they want
to use that service. Once the socket is established, individual requests
are also sent using the socket, so that the server can easily determine
when a new request arrives and who it arrived from.

In some cases, however, shared memory is preferred. Shared
memory is often a better solution when either large amounts of data are
to be transferred or when two processes need random access to a large
common data set. In this case, however, the communicating processes
may still need an extra mechanism in addition to shared memory to
achieve synchronization between themselves. The X Window System, a
graphical display environment for UNIX, is a good example of this: most
graphic requests are sent over sockets, but shared memory is offered
as an additional transport in special cases where large bitmaps are to
be displayed on the screen. In this case, a request to display the bitmap
will still be sent over the socket, but the bulk data of the bitmap itself
will be sent via shared memory.

18.6 At one time, UNIX systems used disk-layout optimizations based
on the rotation position of disk data, but modern implementations,
including Linux, simply optimize for sequential data access. Why do
they do so? Of what hardware characteristics does sequential access
take advantage? Why is rotational optimization no longer so useful?
Answer:
The performance characteristics of disk hardware have changed sub-
stantially in recent years. In particular, many enhancements have been
introduced to increase the maximum bandwidth that can be achieved
on a disk. In a modern system, there can be a long pipeline between the
operating system and the disk’s read-write head. A disk I/O request has
to pass through the computer’s local disk controller, over bus logic to
the disk drive itself, and then internally to the disk, where there is likely
to be a complex controller that can cache data accesses and potentially
optimize the order of I/O requests.

Because of this complexity, the time taken for one I/O request to be
acknowledged and for the next request to be generated and received
by the disk can far exceed the amount of time between one disk sector
passing under the read-write head and the next sector header arriving.
In order to be able efficiently to read multiple sectors at once, disks
will employ a readahead cache. While one sector is being passed back
to the host computer, the disk will be busy reading the next sectors in
anticipation of a request to read them. If read requests start arriving in
an order that breaks this readahead pipeline, performance will drop.
As a result, performance benefits substantially if the operating system
tries to keep I/O requests in strict sequential order.

A second feature of modern disks is that their geometry can be very
complex. The number of sectors per cylinder can vary according to the
position of the cylinder: more data can be squeezed into the longer
tracks nearer the edge of the disk than at the center of the disk. For an



Practice Exercises 67

operating system to optimize the rotational position of data on such
disks, it would have to have complete understanding of this geometry,
as well as the timing characteristics of the disk and its controller.
In general, only the disk’s internal logic can determine the optimal
scheduling of I/Os, and the disk’s geometry is likely to defeat any
attempt by the operating system to perform rotational optimizations.




