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Objectives

® To introduce the notion of a thread — a fundamental unit of CPU
utilization that forms the basis of multithreaded computer systems

m To discuss the APIs for the Pthreads, Win32, and Java thread libraries

® To examine issues related to multithreaded programming
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@K Single and Multithreaded Processes
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Benefits

® Responsiveness
® Resource Sharing
m Economy

m Scalability
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Multicore Programming

® Multicore systems putting pressure on programmers, challenges
include:

e Dividing activities

e Balance

e Data splitting

e Data dependency

e Testing and debugging
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Multithreaded Server Architecture
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%oncurrent Execution on a Single-core System
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%arallel Execution on a Multicore System
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User Threads

® Thread management done by user-level threads library

® Three primary thread libraries:
e POSIX Pthreads
e Win32 threads
e Javathreads
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Kernel Threads

m Supported by the Kernel

m Examples
e Windows XP/2000
e Solaris
e Linux
e Tru64 UNIX
e Mac OS X
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® Many-to-One

Multithreading Models

B One-to-One

®  Many-to-Many
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® Many user-level threads mapped to single kernel thread

Many-to-One

m Examples:
e Solaris Green Threads
e GNU Portable Threads
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Many-to-One Model
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One-to-One

m Each user-level thread maps to kernel thread

m Examples
e Windows NT/XP/2000
e Linux
e Solaris 9 and later

Operating System Concepts with Java — 8th Edition 14.15 Silberschatz, Galvin and Gagne ©2009



One-to-one Model

«——— User thread
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Many-to-Many Model

m Allows many user level threads to be mapped to many kernel
threads

m Allows the operating system to create a sufficient number of kernel
threads

m Solaris prior to version 9

® Windows NT/2000 with the ThreadFiber package
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Many-to-Many Model
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Two-level Model

®  Similar to M:M, except that it allows a user thread to be bound to
kernel thread

m Examples
e |IRIX
e HP-UX
e Tru64 UNIX
e Solaris 8 and earlier
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Two-level Model
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Thread Libraries

m Thread library provides programmer with API for creating and
managing threads

® Two primary ways of implementing
e Library entirely in user space
e Kernel-level library supported by the OS
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Pthreads

® May be provided either as user-level or kernel-level

m A POSIX standard (IEEE 1003.1c) API for thread creation and
synchronization

m API specifies behavior of the thread library, implementation is up to
development of the library

®m Common in UNIX operating systems (Solaris, Linux, Mac OS X)
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Java Threads

®m Java threads are managed by the JVM

®m Java threads may be created by:
e Implementing the Runnable interface

public interface Runnable

{
}

public abstract void run();

<
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Java Threads - Example Program

class Mutablelnteger
{
private int wvalue;
public int getValue() {
return value;
}
public void setValue(int value) {
this.value = value;

}
}

class Summation implements Runnable
{ private int upper;
private MutableInteger sumValue;
public Summation(int upper, MutableInteger sumValue) {
this.upper = upper;
this.sumValue = sumValue;

}

public void run() {
int sum = 0;
for (int i = 0; i <= upper; i++)
gum += 1i;
sumValue.setValue(sum);
}
}
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Java Threads - Example Program

public class Driver

public static void main(String[] args) {
if (args.length > 0) {
if (Integer.parselnt(args[0]) < 0)
System.err.println(args[0] + " must be >= 0.");
else {
// create the object to be shared
MutableInteger sum = new MutableInteger();
int upper = Integer.parselnt(args[0]);
Thread thrd = new Thread(new Summation(upper, sum));
thrd.start();
try {
thrd.join();
System.out.println
("The sum of "+upper+" is "+sum.getValue());
} catch (InterruptedException ie) { }

}
}

else
System.err.println("Usage: Summation <integer wvalue>");

}
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Java Thread States

exits run() method

new start()
NEW

RUNNABLE
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locking join(time)

join()

Y
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%ava Threads - Producer-Consumer

inpﬂrt java-utll.Date:

public clase Factory
-l
public static woid main(String arga(]) |
/f create the measage queue
Channel<Date> queue = new Message(Queue<Date>();

/f Create the producer and consumer threads and pass
/f each thread a reference to the MessageQueue cbject.
Thread producer = new Thread(new Producer(gueue)};
Thread consumer = new Thread(new Consumer(gueue));

/f atart the threads

producer.start();
congumer . start (]} :
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%ava Threads - Producer-Consumer

impert java.util.Date;

clazg Producer implements Runnable

{

private Channel<Date> queue;

public Producer(Channel<Date> queue) |
this.queue = gqueue;
}

public veid run() |
Date measage,

while (true) {
/f nap for awhile
Sleepltilities.nap(};

/f produce an item and enter it into the buffer
mesgage = new Datel);

System.out.println("Producer produced " + measage);
queue . send (measage) ;

h
}
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%ava Threads - Producer-Consumer

import java.util.Date;

clasa Consumer inplenenta Runnakbkle

{

private Channel<Date> queue,
public Consumer {Channel<Date> gqueusa) |
this.queue = gqueuse;
}
public veid run(} |
Date measage,
while {true) {
/¢ nap for awhile
Sleeplitilities.nap();

/4 consume an item from the buffer
meszage = gqueue.receivel);

if {meszage '= null)
Syatem.out.println{“Consumer consumed " + message);
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Threading Issues

m Semantics of fork() and exec() system calls

m Thread cancellation of target thread
e Asynchronous or deferred

® Signal handling
m Thread pools
m Thread-specific data

m Scheduler activations
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ﬁg’ Semantics of fork() and exec()

m Does fork() duplicate only the calling thread or all threads?
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Thread Cancellation

® Terminating a thread before it has finished

m Two general approaches:

e Asynchronous cancellation terminates the target thread
immediately

e Deferred cancellation allows the target thread to periodically
check if it should be cancelled
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Signal Handling

m Signals are used in UNIX systems to notify a process that a
particular event has occurred.

m Asignal handler is used to process signals.
1. Signal is generated by particular event
2. Signal is delivered to a process
3. Signal is handled

m  Options:
e Deliver the signal to the thread to which the signal applies
e Deliver the signal to every thread in the process
e Deliver the signal to certain threads in the process
e Assign a specific threa to receive all signals for the process
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Thread Pools

m Create a number of threads in a pool where they await work.

m Advantages:
e Usually slightly faster to service a request with an existing thread
than create a new thread.

e Allows the number of threads in the application(s) to be bound to
the size of the pool.
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Thread Specific Data

®m Allows each thread to have its own copy of data

m Useful when you do not have control over the thread creation process
(i.e., when using a thread pool)
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Scheduler Activations

® Both M:M and Two-level models require communication to maintain
the appropriate number of kernel threads allocated to the application

m Scheduler activations provide upcalls - a communication mechanism
from the kernel to the thread library

®  This communication allows an application to maintain the correct
number kernel threads
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® Windows XP Threads

Operating System Examples

® Linux Thread
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Windows XP Threads

ETHREAD
thread start
address
pointer to
parent process KTHREAD
scheduling
and
synchronization
. information
5 kernel TEB
stack
thread identifier
user
stack
thread-local
storage
kernel space user space
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Linux Threads

flag meaning
CLONE FS File-system information is shared.
CLONE VM The same memory space is shared.
CLONE SIGHAND Signal handlers are shared.
CLONE FILES The set of open files is shared.
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Windows XP Threads

® |Implements the one-to-one mapping, kernel-level

m Each thread contains
e Athread id
e Register set
e Separate user and kernel stacks
e Private data storage area

B The register set, stacks, and private storage area are known as the
context of the threads

® The primary data structures of a thread include:
e ETHREAD (executive thread block)
e KTHREAD (kernel thread block)

e TEB (thread environment block) ? y,

4

Operating System Concepts with Java — 8t Edition 14.40 Silberschatz, Galvin and Gagne ©2009



Linux Threads

® Linux refers to them as tasks rather than threads

m Thread creation is done through clone() system call

m clone() allows a child task to share the address space of the parent
task (process)
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End of Chapter 14
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