Chapter 4: Threads

Operating System Concepts with Java — 8th Edition 14.1 Silberschatz, Galvin and Gagne ©2009

Chapter 4: Threads

Overview

Multithreading Models
Thread Libraries

Threading Issues

Operating System Examples
Windows XP Threads

Linux Threads

iy’

<

Operating System Concepts with Java — 8th Edition 14.2 Silberschatz, Galvin and Gagne ©2009

Objectives

® To introduce the notion of a thread — a fundamental unit of CPU
utilization that forms the basis of multithreaded computer systems

m To discuss the APIs for the Pthreads, Win32, and Java thread libraries

® To examine issues related to multithreaded programming

d

|

Operating System Concepts with Java — 8t Edition 14.3 Silberschatz, Galvin and Gagne ©2009

@K Single and Multithreaded Processes

code data files
registers stack
thread —

single-threaded process

Operating System Concepts with Java — 8th Edition

code data files
registers ||| registers ||| registers
stack stack stack
.‘_

— thread

14.4

multithreaded process

y’

Vg
~adi

Silberschatz, Galvin and Gagne ©2009

Benefits

® Responsiveness
® Resource Sharing
m Economy

m Scalability

4
i

Operating System Concepts with Java — 8th Edition 145 Silberschatz, Galvin and Gagne ©2009

Multicore Programming

® Multicore systems putting pressure on programmers, challenges
include:

e Dividing activities

e Balance

e Data splitting

e Data dependency

e Testing and debugging

iy’

/
<4

Operating System Concepts with Java — 8th Edition 14.6 Silberschatz, Galvin and Gagne ©2009

Multithreaded Server Architecture

(2) create new
(1) request thread to service
the request

client » server » thread

(3) resume listening
for additional
client requests

Operating System Concepts with Java — 8th Edition 14.7 Silberschatz, Galvin and Gagne ©2009

%oncurrent Execution on a Single-core System

single core | Ty To T3 T4 Ty To T3 T4 Ty

time

y’

Vg
~adi

Operating System Concepts with Java — 8th Edition 14.8 Silberschatz, Galvin and Gagne ©2009

%arallel Execution on a Multicore System

core 1 Ty T3 Ty T3 T+

core2 | To Ty To Ty To

<4

Operating System Concepts with Java — 8th Edition 14.9 Silberschatz, Galvin and Gagne ©2009

User Threads

® Thread management done by user-level threads library

® Three primary thread libraries:
e POSIX Pthreads
e Win32 threads
e Javathreads

Operating System Concepts with Java — 8th Edition 14.10 Silberschatz, Galvin and Gagne ©2009

Kernel Threads

m Supported by the Kernel

m Examples
e Windows XP/2000
e Solaris
e Linux
e Tru64 UNIX
e Mac OS X

iy’

<

Operating System Concepts with Java — 8th Edition 14.11 Silberschatz, Galvin and Gagne ©2009

® Many-to-One

Multithreading Models

B One-to-One

® Many-to-Many

sy’

7
Operating System Concepts with Java — 8th Edition 14.12 Silberschatz, Galvin and Gagne ©2009

® Many user-level threads mapped to single kernel thread

Many-to-One

m Examples:
e Solaris Green Threads
e GNU Portable Threads

1/ 4
Vg
~adi

Operating System Concepts with Java — 8th Edition 14.13 Silberschatz, Galvin and Gagne ©2009

Many-to-One Model

+—— |ser thread

«—— kernel thread ,!)

Vg
~adi

Operating System Concepts with Java — 8th Edition 14.14 Silberschatz, Galvin and Gagne ©2009

One-to-One

m Each user-level thread maps to kernel thread

m Examples
e Windows NT/XP/2000
e Linux
e Solaris 9 and later

Operating System Concepts with Java — 8th Edition 14.15 Silberschatz, Galvin and Gagne ©2009

One-to-one Model

«——— User thread

B
® 06 O

iy’

1“’
<4

Operating System Concepts with Java — 8th Edition 14.16 Silberschatz, Galvin and Gagne ©2009

Many-to-Many Model

m Allows many user level threads to be mapped to many kernel
threads

m Allows the operating system to create a sufficient number of kernel
threads

m Solaris prior to version 9

® Windows NT/2000 with the ThreadFiber package

sy’

|

Operating System Concepts with Java — 8t Edition 14.17 Silberschatz, Galvin and Gagne ©2009

Many-to-Many Model

<«—— user thread

<«—— kernel thread

/4
Py
s

Operating System Concepts with Java — 8th Edition 14.18 Silberschatz, Galvin and Gagne ©2009

Two-level Model

® Similar to M:M, except that it allows a user thread to be bound to
kernel thread

m Examples
e |IRIX
e HP-UX
e Tru64 UNIX
e Solaris 8 and earlier

ol

<

Operating System Concepts with Java — 8th Edition 14.19 Silberschatz, Galvin and Gagne ©2009

Two-level Model

<«— yser thread

@ <«— kernel thread

/4
Py
s

Operating System Concepts with Java — 8th Edition 14.20 Silberschatz, Galvin and Gagne ©2009

Thread Libraries

m Thread library provides programmer with API for creating and
managing threads

® Two primary ways of implementing
e Library entirely in user space
e Kernel-level library supported by the OS

ol

/
<4

Operating System Concepts with Java — 8t Edition 14.21 Silberschatz, Galvin and Gagne ©2009

Pthreads

® May be provided either as user-level or kernel-level

m A POSIX standard (IEEE 1003.1c) API for thread creation and
synchronization

m API specifies behavior of the thread library, implementation is up to
development of the library

®m Common in UNIX operating systems (Solaris, Linux, Mac OS X)

iy’

4

Operating System Concepts with Java — 8t Edition 14.22 Silberschatz, Galvin and Gagne ©2009

Java Threads

®m Java threads are managed by the JVM

®m Java threads may be created by:
e Implementing the Runnable interface

public interface Runnable

{
}

public abstract void run();

<

Operating System Concepts with Java — 8th Edition 14.23 Silberschatz, Galvin and Gagne ©2009

Java Threads - Example Program

class Mutablelnteger
{
private int wvalue;
public int getValue() {
return value;
}
public void setValue(int value) {
this.value = value;

}
}

class Summation implements Runnable
{ private int upper;
private MutableInteger sumValue;
public Summation(int upper, MutableInteger sumValue) {
this.upper = upper;
this.sumValue = sumValue;

}

public void run() {
int sum = 0;
for (int i = 0; i <= upper; i++)
gum += 1i;
sumValue.setValue(sum);
}
}

Operating System Concepts with Java — 8th Edition 14.24 Silberschatz, Galvin and Gagne ©2009

Java Threads - Example Program

public class Driver

public static void main(String[] args) {
if (args.length > 0) {
if (Integer.parselnt(args[0]) < 0)
System.err.println(args[0] + " must be >= 0.");
else {
// create the object to be shared
MutableInteger sum = new MutableInteger();
int upper = Integer.parselnt(args[0]);
Thread thrd = new Thread(new Summation(upper, sum));
thrd.start();
try {
thrd.join();
System.out.println
("The sum of "+upper+" is "+sum.getValue());
} catch (InterruptedException ie) { }

}
}

else
System.err.println("Usage: Summation <integer wvalue>");

}

Operating System Concepts with Java — 8t Edition 14.25 Silberschatz, Galvin and Gagne ©2009

Java Thread States

exits run() method

new start()
NEW

RUNNABLE

h

locking join(time)

join()

Y
BLOCKED WAITING

f
<4

Operating System Concepts with Java — 8th Edition 14.26 Silberschatz, Galvin and Gagne ©2009

%ava Threads - Producer-Consumer

inpﬂrt java-utll.Date:

public clase Factory
-l
public static woid main(String arga(]) |
/f create the measage queue
Channel<Date> queue = new Message(Queue<Date>();

/f Create the producer and consumer threads and pass
/f each thread a reference to the MessageQueue cbject.
Thread producer = new Thread(new Producer(gueue)};
Thread consumer = new Thread(new Consumer(gueue));

/f atart the threads

producer.start();
congumer . start (]} :

Operating System Concepts with Java — 8t Edition 14.27 Silberschatz, Galvin and Gagne ©2009

%ava Threads - Producer-Consumer

impert java.util.Date;

clazg Producer implements Runnable

{

private Channel<Date> queue;

public Producer(Channel<Date> queue) |
this.queue = gqueue;
}

public veid run() |
Date measage,

while (true) {
/f nap for awhile
Sleepltilities.nap(};

/f produce an item and enter it into the buffer
mesgage = new Datel);

System.out.println("Producer produced " + measage);
queue . send (measage) ;

h
}
!

/4
Operating System Concepts with Java — 8t Edition 14.28 Silberschatz, Galvin and Gagne ©2009

%ava Threads - Producer-Consumer

import java.util.Date;

clasa Consumer inplenenta Runnakbkle

{

private Channel<Date> queue,
public Consumer {Channel<Date> gqueusa) |
this.queue = gqueuse;
}
public veid run(} |
Date measage,
while {true) {
/¢ nap for awhile
Sleeplitilities.nap();

/4 consume an item from the buffer
meszage = gqueue.receivel);

if {meszage '= null)
Syatem.out.println{“Consumer consumed " + message);

Operating System Concepts with Java — 8t Edition 14.29 Silberschatz, Galvin and Gagne ©2009

Threading Issues

m Semantics of fork() and exec() system calls

m Thread cancellation of target thread
e Asynchronous or deferred

® Signal handling
m Thread pools
m Thread-specific data

m Scheduler activations

iy’

1“’
<4

Operating System Concepts with Java — 8th Edition 14.30 Silberschatz, Galvin and Gagne ©2009

ﬁg’ Semantics of fork() and exec()

m Does fork() duplicate only the calling thread or all threads?

iy’

1“’
<4

Operating System Concepts with Java — 8th Edition 14.31 Silberschatz, Galvin and Gagne ©2009

Thread Cancellation

® Terminating a thread before it has finished

m Two general approaches:

e Asynchronous cancellation terminates the target thread
immediately

e Deferred cancellation allows the target thread to periodically
check if it should be cancelled

sy’

|

Silberschatz, Galvin and Gagne ©2009

Operating System Concepts with Java — 8th Edition 14.32

Signal Handling

m Signals are used in UNIX systems to notify a process that a
particular event has occurred.

m Asignal handler is used to process signals.
1. Signal is generated by particular event
2. Signal is delivered to a process
3. Signal is handled

m Options:
e Deliver the signal to the thread to which the signal applies
e Deliver the signal to every thread in the process
e Deliver the signal to certain threads in the process
e Assign a specific threa to receive all signals for the process

d

4

Operating System Concepts with Java — 8t Edition 14.33 Silberschatz, Galvin and Gagne ©2009

Thread Pools

m Create a number of threads in a pool where they await work.

m Advantages:
e Usually slightly faster to service a request with an existing thread
than create a new thread.

e Allows the number of threads in the application(s) to be bound to
the size of the pool.

d

|

Operating System Concepts with Java — 8t Edition 14.34 Silberschatz, Galvin and Gagne ©2009

Thread Specific Data

®m Allows each thread to have its own copy of data

m Useful when you do not have control over the thread creation process
(i.e., when using a thread pool)

ol

/
<4

Operating System Concepts with Java — 8th Edition 14.35 Silberschatz, Galvin and Gagne ©2009

Scheduler Activations

® Both M:M and Two-level models require communication to maintain
the appropriate number of kernel threads allocated to the application

m Scheduler activations provide upcalls - a communication mechanism
from the kernel to the thread library

® This communication allows an application to maintain the correct
number kernel threads

iy’

4

Operating System Concepts with Java — 8t Edition 14.36 Silberschatz, Galvin and Gagne ©2009

® Windows XP Threads

Operating System Examples

® Linux Thread

d

7
Operating System Concepts with Java — 8th Edition 14.37 Silberschatz, Galvin and Gagne ©2009

Windows XP Threads

ETHREAD
thread start
address
pointer to
parent process KTHREAD
scheduling
and
synchronization
. information
5 kernel TEB
stack
thread identifier
user
stack
thread-local
storage
kernel space user space
14.38

Operating System Concepts with Java — 8th Edition

Silberschatz, Galvin and Gagne ©2009

Linux Threads

flag meaning
CLONE FS File-system information is shared.
CLONE VM The same memory space is shared.
CLONE SIGHAND Signal handlers are shared.
CLONE FILES The set of open files is shared.

iy’

4

Operating System Concepts with Java — 8t Edition 14.39 Silberschatz, Galvin and Gagne ©2009

Windows XP Threads

® |Implements the one-to-one mapping, kernel-level

m Each thread contains
e Athread id
e Register set
e Separate user and kernel stacks
e Private data storage area

B The register set, stacks, and private storage area are known as the
context of the threads

® The primary data structures of a thread include:
e ETHREAD (executive thread block)
e KTHREAD (kernel thread block)

e TEB (thread environment block) ? y,

4

Operating System Concepts with Java — 8t Edition 14.40 Silberschatz, Galvin and Gagne ©2009

Linux Threads

® Linux refers to them as tasks rather than threads

m Thread creation is done through clone() system call

m clone() allows a child task to share the address space of the parent
task (process)

sy’

|

Operating System Concepts with Java — 8t Edition 14.41 Silberschatz, Galvin and Gagne ©2009

End of Chapter 14

Operating System Concepts with Java — 8th Edition 14.42 Silberschatz, Galvin and Gagne ©2009

	Chapter 4: Threads
	Chapter 4: Threads
	Objectives
	Single and Multithreaded Processes
	Benefits
	Multicore Programming
	Multithreaded Server Architecture
	Concurrent Execution on a Single-core System
	Parallel Execution on a Multicore System
	User Threads
	Kernel Threads
	Multithreading Models
	Many-to-One
	Many-to-One Model
	One-to-One
	One-to-one Model
	Many-to-Many Model
	Many-to-Many Model
	Two-level Model
	Two-level Model
	Thread Libraries
	Pthreads
	Java Threads
	Java Threads - Example Program
	Java Threads - Example Program
	Java Thread States
	Java Threads - Producer-Consumer
	Java Threads - Producer-Consumer
	Java Threads - Producer-Consumer
	Threading Issues
	Semantics of fork() and exec()
	Thread Cancellation
	Signal Handling
	Thread Pools
	Thread Specific Data
	Scheduler Activations
	Operating System Examples
	Windows XP Threads
	Linux Threads
	Windows XP Threads
	Linux Threads
	End of Chapter 14

