
Preface

Operating systems are an essential part of any computer system. Similarly,
a course on operating systems is an essential part of any computer-science
education. This field is undergoing rapid change, as computers are now
prevalent in virtually every application, from games for children through the
most sophisticated planning tools for governments and multinational firms.
Yet the fundamental concepts remain fairly clear, and it is on these that we base
this book.

We wrote this book as a text for an introductory course in operating systems
at the junior or senior undergraduate level or at the first-year graduate level.
We hope that practitioners will also find it useful. It provides a clear description
of the concepts that underlie operating systems. As prerequisites, we assume
that the reader is familiar with basic data structures, computer organization,
and a high-level language, preferably Java. The hardware topics required for
an understanding of operating systems are included in Chapter 1. For code
examples, we use predominantly Java, with some C, but the reader can still
understand the algorithms without a thorough knowledge of these languages.

Concepts are presented using intuitive descriptions. Important theoretical
results are covered, but formal proofs are omitted. The bibliographical notes
at the end of each chapter contain pointers to research papers in which results
were first presented and proved, as well as references to material for further
reading. In place of proofs, figures and examples are used to suggest why we
should expect the result in question to be true.

The fundamental concepts and algorithms covered in the book are often
based on those used in existing commercial operating systems. Our aim
is to present these concepts and algorithms in a general setting that is
not tied to one particular operating system. We present a large number of
examples that pertain to the most popular and the most innovative operating
systems, including Sun Microsystems’ Solaris; Linux; Microsoft Windows
Vista, Windows 2000, and Windows XP; and Apple Mac OS X. When we refer
to Windows XP as an example operating system, we are implying Windows
Vista, Windows XP, and Windows 2000. If a feature exists in a specific release,
we state this explicitly.
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Organization of This Book

The organization of this text reflects our many years of teaching courses on
operating systems. Consideration was also given to the feedback provided by
the reviewers of the text, as well as comments submitted by readers of earlier
editions. In addition, the content of the text corresponds to the suggestions
from Computing Curricula 2005 for teaching operating systems, published by
the Joint Task Force of the IEEE Computing Society and the Association for
Computing Machinery (ACM).

On the supporting Web site for this text, we provide several sample
syllabi that suggest various approaches for using the text in both introductory
and advanced courses. As a general rule, we encourage readers to progress
sequentially through the chapters, as this strategy provides the most thorough
study of operating systems. However, by using the sample syllabi, a reader can
select a different ordering of chapters (or subsections of chapters).

On-line support for the text is provided by WileyPLUS. On this site, students
can find sample exercises and programming problems, and instructors can
assign and grade problems. In addition, on WileyPLUS, students can access new
operating-system simulators, which they can use to work through exercises and
hands-on lab activities. References to the simulators and associated activities
appear at the ends of several chapters in the text.

Content of This Book

The text is organized in eight major parts:

• Overview. Chapters 1 and 2 explain what operating systems are, what they
do, and how they are designed and constructed. These chapters discuss what
the common features of an operating system are, what an operating system
does for the user, and what it does for the computer-system operator. The
presentation is motivational and explanatory in nature. We have avoided a
discussion of how things are done internally in these chapters. Therefore,
they are suitable for individual readers or for students in lower-level classes
who want to learn what an operating system is without getting into the
details of the internal algorithms.

• Process management. Chapters 3 through 7 describe the process concept
and concurrency as the heart of modern operating systems. A process
is the unit of work in a system. Such a system consists of a collection
of concurrently executing processes, some of which are operating-system
processes (those that execute system code) and the rest of which are user
processes (those that execute user code). These chapters cover methods for
process scheduling, interprocess communication, process synchronization,
and deadlock handling. Also included is a discussion of threads, as well
as an examination of issues related to multicore systems.

• Memory management. Chapters 8 and 9 deal with the management of
main memory during the execution of a process. To improve both the
utilization of the CPU and the speed of its response to its users, the
computer must keep several processes in memory. There are many different
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memory-management schemes, reflecting various approaches to memory
management, and the effectiveness of a particular algorithm depends on
the situation.

• Storage management. Chapters 10 through 13 describe how the file system,
mass storage, and I/O are handled in a modern computer system. The
file system provides the mechanism for on-line storage of and access
to both data and programs. We describe the classic internal algorithms
and structures of storage management and provide a firm practical
understanding of the algorithms used—their properties, advantages, and
disadvantages. Our discussion of storage also includes matters related
to secondary and tertiary storage. Since the I/O devices that attach to a
computer vary widely, the operating system needs to provide a wide range
of functionality to applications to allow them to control all aspects of these
devices. We discuss system I/O in depth, including I/O system design,
interfaces, and internal system structures and functions. In many ways,
I/O devices are the slowest major components of the computer. Because
they represent a performance bottleneck, we also examine performance
issues associated with I/O devices.

• Protection and security. Chapters 14 and 15 discuss the mechanisms
necessary for the protection and security of computer systems. The
processes in an operating system must be protected from one another’s
activities, and to provide such protection, we must ensure that only
processes that have gained proper authorization from the operating system
can operate on the files, memory, CPU, and other resources of the system.
Protection is a mechanism for controlling the access of programs, processes,
or users to the resources defined by a computer system. This mechanism
must provide a means of specifying the controls to be imposed, as
well as a means of enforcement. Security protects the integrity of the
information stored in the system (both data and code), as well as the
physical resources of the system, from unauthorized access, malicious
destruction or alteration, and accidental introduction of inconsistency.

• Distributed systems. Chapters 16 through 18 deal with a collection of
processors that do not share memory or a clock—a distributed system. By
providing the user with access to the various resources that it maintains, a
distributed system can improve computation speed and data availability
and reliability. Such a system also provides the user with a distributed file
system, which is a file-service system whose users, servers, and storage
devices are dispersed among the sites of a distributed system. A distributed
system must provide various mechanisms for process synchronization
and communication, as well as for dealing with deadlock problems and a
variety of failures that are not encountered in a centralized system.

• Special-purpose systems. Chapters 19 and 20 deal with systems used for
specific purposes, including real-time systems and multimedia systems.
These systems have specific requirements that differ from those of the
general-purpose systems that are the focus of the remainder of the text.
Real-time systems may require not only that computed results be “correct”
but also that the results be produced within a specified deadline period.
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Multimedia systems require quality-of-service guarantees ensuring that
the multimedia data are delivered to clients within a specific time frame.

• Case studies. Chapters 21 through 23 in the book, and Appendices A
through C (which are available on www.wiley.com/college/silberschatz
and WileyPLUS), integrate the concepts described in the earlier chapters by
describing real operating systems. These systems include Linux, Windows
XP, FreeBSD, Mach, and Windows 2000. We chose Linux and FreeBSD
because UNIX—at one time—was almost small enough to understand
yet was not a “toy” operating system. Most of its internal algorithms were
selected for simplicity, rather than for speed or sophistication. Both Linux
and FreeBSD are readily available to computer-science departments, so
many students have access to these systems. We chose Windows XP and
Windows 2000 because they provide an opportunity for us to study a
modern operating system with a design and implementation drastically
different from those of UNIX. Chapter 23 briefly describes a few other
influential operating systems.

Operating-System Environments

This book uses examples of many real-world operating systems to illustrate
fundamental operating-system concepts. However, particular attention is paid
to the Microsoft family of operating systems (including Windows Vista,
Windows 2000, and Windows XP) and various versions of UNIX (including
Solaris, BSD, and Mac OS X). We also provide a significant amount of coverage
of the Linux operating system, reflecting the most recent version of the kernel
—Version 2.6—at the time this book was written.

The text uses Java to illustrate many operating-system concepts, such as
multithreading, CPU scheduling, process synchronization, deadlock, memory
and file management, security, networking, and distributed systems. Java is
more a technology than a programming language, so it is an excellent vehicle
for demonstrations.

Much of the Java-related material included has been developed and
class-tested in undergraduate operating-systems classes. From our experience,
students entering these classes lacking knowledge of Java—but with expe-
rience using C++ and basic object-oriented principles—generally have little
trouble with Java. Rather, most difficulties lie in understanding such concepts
as multithreading and data sharing by multiple, concurrently running threads.
These concepts are systematic rather than being specific to Java; even students
with a sound knowledge of Java are likely to have difficulty with them. We
thus emphasize concepts of operating systems rather than concentrating on
Java syntax.

All the Java programs in this text compile with versions 1.5 and 1.6 of the
Java Software Development Kit (SDK). Java 1.5 provides several new features—
both at the language level and at the API level—that enhance Java’s usefulness
for studying operating systems. We include several new additions to the Java
1.5 API throughout this text. Many programs provided in this text will not
compile with earlier releases of the Java SDK, and we encourage all readers to
use Java 1.5 as a minimum Java configuration.
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The text also provides a few example programs written in C that are
intended to run in the Windows and POSIX programming environments.
POSIX (which stands for Portable Operating System Interface) represents a set of
standards implemented primarily for UNIX-based operating systems. Although
Windows Vista, Windows XP, and Windows 2000 systems can also run certain
POSIX programs, our coverage of POSIX focuses primarily on UNIX and Linux
systems.

The Eighth Edition

As we wrote the Eighth Edition of Operating System Concepts with Java, we were
guided by the many comments and suggestions we received from readers of
our previous editions, as well as by our own observations about the rapidly
changing fields of operating systems and networking. We have rewritten
material in most of the chapters by bringing older material up to date and
removing material that was no longer of interest or relevance.

We have made substantive revisions and organizational changes in many
of the chapters. Most importantly, we have added coverage of open-source
operating systems in Chapter 1. We have also added more practice exercises
for students and included solutions in WileyPLUS, which also includes new
simulators to provide demonstrations of operating-system operation. Below,
we provide a brief outline of the major changes to the various chapters:

• Chapter 1, Introduction, has been expanded to include multicore CPUs,
clustered computers, and open-source operating systems.

• Chapter 2, Operating-System Structures, provides significantly updated
coverage of virtual machines, as well as multicore CPUs, the GRUB boot
loader, and operating-system debugging.

• Chapter 4, Threads, adds new coverage of programming for multicore
systems and updates the coverage of Java thread states.

• Chapter 5, CPU Scheduling, adds coverage of virtual machine scheduling
and multithreaded, multicore architectures. It also includes new schedul-
ing features in Java 1.5.

• Chapter 6, Process Synchronization, adds a discussion of mutual exclu-
sion locks, priority inversion, and transactional memory.

• Chapter 8, Main Memory, includes a discussion of NUMA.

• Chapter 9, Virtual Memory, updates the Solaris example to include Solaris
10 memory management.

• Chapter 10, File-System Interface, is updated with current technologies
and capacities.

• Chapter 11, File-System Implementation, includes a full description of
Sun’s ZFS file system and expands the coverage of volumes and directories.

• Chapter 12, Mass-Storage Structure, adds coverage of iSCSI, volumes, and
ZFS pools.
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• Chapter 13, I/O Systems, adds coverage of PCIX PCI Express, and Hyper-
Transport.

• Chapter 16, Distributed System Structures, adds coverage of 802.11
wireless networks.

• Chapter 21, The Linux System, has been updated to cover the latest version
of the Linux kernel.

• Chapter 23, Influential Operating Systems, increases coverage of very
early computers as well as TOPS-20, CP/M, MS-DOS, Windows, and the
original Mac OS.

Programming Problems and Projects

To emphasize the concepts presented in the text, we have added or modified
12 programming problems and projects using Java. In general, programming
projects are more detailed and require a greater time commitment than
programming problems. These problems and projects emphasize processes
and interprocess communication, threads, process synchronization, virtual
memory, file systems, and networking. New programming problems and
projects include implementing socket programming, using Java’s remote
method invocation (RMI), working with multithreaded sorting programming,
listing threads in the Java virtual machine (JVM), designing a process identifier
management system, and managing virtual memory.

The Eighth Edition also incorporates a set of operating-system simulators
designed by Steven Robbins of the University of Texas at San Antonio. The
simulators are intended to model the behavior of an operating system as it
performs various tasks, such as CPU and disk-head scheduling, process creation
and interprocess communication, starvation, and address translation. These
simulators are written in Java and will run on any computer system with
Java 1.4. Students can download the simulators from WileyPLUS and observe
the behavior of several operating-system concepts in various scenarios. In
addition, each simulator includes several exercises that ask students to set
certain parameters of the simulator, observe how the system behaves, and then
explain this behavior. These exercises can be assigned through WileyPLUS. The
WileyPLUS course also includes algorithmic problems and tutorials.

Teaching Supplements

The following teaching supplements are available on WileyPLUS and
www.wiley.com/college/silberschatz: a set of slides to accompany the book,
model course syllabi, all Java and C source code, up-to-date errata, three
case-study appendices, and the Distributed Communication appendix. The
WileyPLUS course also contains simulators and associated exercises, additional
practice exercises (with solutions) not found in the text, and a test bank of
additional problems. Students are encouraged to solve the practice exercises
on their own and then use the provided solutions to check their own answers.
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To obtain restricted supplements, such as the solution guide to the exercises
in the text, contact your local John Wiley & Sons sales representative. Note that
these supplements are available only to faculty who use this text. You can find
your Wiley representative by going to www.wiley.com/college and clicking
“Who’s my rep?”

Contacting Us

We have attempted to clean up every error in this new edition, but—as happens
with operating systems—a few obscure bugs may remain; an up-to-date errata
list is accessible from the book’s home page. We would appreciate hearing from
you about any textual errors or omissions in the book that are not on the current
list of errata.

We would be glad to receive suggestions on improvements to the book. We
also welcome any contributions to the book’s Web page that could be of use
to other readers, such as programming exercises, project suggestions, on-line
labs and tutorials, and teaching tips.

E-mail should be addressed to os-book-authors@cs.yale.edu. Any other
correspondence should be sent to Avi Silberschatz, Department of Computer
Science, Yale University, 51 Prospect Street, P.O. Box 208285, New Haven, CT
06520-8285 USA.
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