
7C H A P T E R

Deadlocks

Practice Exercises

7.1 List three examples of deadlocks that are not related to a computer-
system environment.
Answer:

• Two cars crossing a single-lane bridge from opposite directions.

• A person going down a ladder while another person is climbing up
the ladder.

• Two trains traveling toward each other on the same track.

• Two carpenters who must pound nails. There is a single hammer
and a single bucket of nails. Deadlock occurs if one carpenter has
the hammer and the other carpenter has the nails.

7.2 Suppose that a system is in an unsafe state. Show that it is possible for
the processes to complete their execution without entering a deadlock
state.
Answer: An unsafe state may not necessarily lead to deadlock, it just
means that we cannot guarantee that deadlock will not occur. Thus, it
is possible that a system in an unsafe state may still allow all processes
to complete without deadlock occurring. Consider the situation where
a system has 12 resources allocated among processes P0, P1, and P2. The
resources are allocated according to the following policy:

Max Current Need
P0 10 5 5
P1 4 2 2
P2 9 3 6

21

22 Chapter 7 Deadlocks

for (int i = 0; i < n; i++) {
// first find a thread that can finish

for (int j = 0; j < n; j++) {
if (!finish[j]) {

boolean temp = true;

for (int k = 0; k < m; k++) {
if (need[j][k] > work[k])

temp = false;

}

if (temp) { // if this thread can finish

finish[j] = true;

for (int x = 0; x < m; x++)

work[x] += work[j][x];

}
}

}
}

Figure 7.1 Banker’s algorithm safety algorithm.

Currently there are two resources available. This system is in an un-
safe state as process P1 could complete, thereby freeing a total of four
resources. But we cannot guarantee that processes P0 and P2 can com-
plete. However, it is possible that a process may release resources before
requesting any further. For example, process P2 could release a resource,
thereby increasing the total number of resources to five. This allows pro-
cess P0 to complete, which would free a total of nine resources, thereby
allowing process P2 to complete as well.

7.3 Prove that the safety algorithm presented in Section 7.5.3 requires an
order of m × n2 operations.
Answer:
Figure 7.1 provides Java code that implement the safety algorithm of
the banker’s algorithm (the complete implementation of the banker’s
algorithm is available with the source code download).
As can be seen, the nested outer loops—both of which loop through n
times—provide the n2 performance. Within these outer loops are two
sequential inner loops which loop m times. The big-oh of this algorithm
is therefore O(m × n2).

7.4 Consider a computer system that runs 5,000 jobs per month with no
deadlock-prevention or deadlock-avoidance scheme. Deadlocks occur
about twice per month, and the operator must terminate and rerun about
10 jobs per deadlock. Each job is worth about $2 (in CPU time), and the
jobs terminated tend to be about half-done when they are aborted.

A systems programmer has estimated that a deadlock-avoidance
algorithm (like the banker’s algorithm) could be installed in the system
with an increase in the average execution time per job of about 10 percent.
Since the machine currently has 30-percent idle time, all 5,000 jobs per
month could still be run, although turnaround time would increase by
about 20 percent on average.

Practice Exercises 23

a. What are the arguments for installing the deadlock-avoidance
algorithm?

b. What are the arguments against installing the deadlock-avoidance
algorithm?

Answer: An argument for installing deadlock avoidance in the system
is that we could ensure deadlock would never occur. In addition, despite
the increase in turnaround time, all 5,000 jobs could still run.
An argument against installing deadlock avoidance software is that
deadlocks occur infrequently and they cost little when they do occur.

7.5 Can a system detect that some of its processes are starving? If you answer
“yes,” explain how it can. If you answer “no,” explain how the system
can deal with the starvation problem.
Answer: Starvation is a difficult topic to define as it may mean different
things for different systems. For the purposes of this question, we will
define starvation as the situation whereby a process must wait beyond
a reasonable period of time—perhaps indefinitely—before receiving a
requested resource. One way of detecting starvation would be to first
identify a period of time—T —that is considered unreasonable. When a
process requests a resource, a timer is started. If the elapsed time exceeds
T , then the process is considered to be starved.
One strategy for dealing with starvation would be to adopt a policy
where resources are assigned only to the process that has been waiting
the longest. For example, if process Pa has been waiting longer for re-
source X than process Pb , the request from process Pb would be deferred
until process Pa ’s request has been satisfied.
Another strategy would be less strict than what was just mentioned. In
this scenario, a resource might be granted to a process that has waited less
than another process, providing that the other process is not starving.
However, if another process is considered to be starving, its request
would be satisfied first.

7.6 Consider the following resource-allocation policy. Requests and releases
for resources are allowed at any time. If a request for resources cannot
be satisfied because the resources are not available, then we check any
processes that are blocked, waiting for resources. If they have the desired
resources, then these resources are taken away from them and are given
to the requesting process. The vector of resources for which the process
is waiting is increased to include the resources that were taken away.

For example, consider a system with three resource types and the
vector Available initialized to (4,2,2). If process P0 asks for (2,2,1), it gets
them. If P1 asks for (1,0,1), it gets them. Then, if P0 asks for (0,0,1), it
is blocked (resource not available). If P2 now asks for (2,0,0), it gets the
available one (1,0,0) and one that was allocated to P0 (since P0 is blocked).
P0’s Allocation vector goes down to (1,2,1) and its Need vector goes up to
(1,0,1).

a. Can deadlock occur? If you answer “yes”, give an example. If you
answer “no,” specify which necessary condition cannot occur.

b. Can indefinite blocking occur? Explain your answer.

24 Chapter 7 Deadlocks

Answer:

a. Deadlock cannot occur because preemption exists.

b. Yes. A process may never acquire all the resources it needs if they
are continuously preempted by a series of requests such as those
of process C.

7.7 Suppose that you have coded the deadlock-avoidance safety algorithm
and now have been asked to implement the deadlock-detection algo-
rithm. Can you do so by simply using the safety algorithm code and
redefining Maxi = Waitingi + Allocationi , where Waitingi is a vector
specifying the resources process i is waiting for, and Allocationi is as
defined in Section 7.5? Explain your answer.
Answer:
Yes. The Max vector represents the maximum request a process may
make. When calculating the safety algorithm we use the Need matrix,
which represents Max — Allocation. Another way to think of this is Max
= Need + Allocation. According to the question, the Waiting matrix fulfills
a role similar to the Need matrix, therefore Max = Waiting + Allocation.

7.8 Is it possible to have a deadlock involving only one single process?
Explain your answer.
Answer: No. This follows directly from the hold-and-wait condition.

