
3
CHAPTER

Processes

Exercises

3.12 Describe the actions taken by a kernel to context-switch between pro-
cesses.

3.13 Construct a process tree similar to Figure 3.7. To obtain process infor-
mation for the UNIX or Linux system, use the command ps -ael.
Use the command man ps to get more information about the ps com-
mand. The task manager on Windows systems does not provide the
parent process ID, but the process monitor tool, available from tech-
net.microsoft.com, provides a process-tree tool.

3.14 Explain the role of the init (or systemd) process on UNIX and Linux
systems in regard to process termination.

3.15 Including the initial parent process, how many processes are created by
the program shown in Figure 3.32?

#include <stdio.h>
#include <unistd.h>

int main()
{

int i;

for (i = 0; i < 4; i++)
fork();

return 0;
}

Figure 3.1 How many processes are created?

11



12 Chapter 3 Processes

3.16 Explain the circumstances under which the line of code marked
printf("LINE J") in Figure 3.33 will be reached.

3.17 Using the program in Figure 3.34, identify the values of pid at lines A, B,
C, and D. (Assume that the actual pids of the parent and child are 2600
and 2603, respectively.)

3.18 Give an example of a situation inwhich ordinary pipes aremore suitable
than named pipes and an example of a situation in which named pipes
are more suitable than ordinary pipes.

3.19 Consider the RPC mechanism. Describe the undesirable consequences
that could arise from not enforcing either the “at most once” or “exactly
once” semantic. Describe possible uses for a mechanism that has neither
of these guarantees.

3.20 Using the program shown in Figure 3.35, explain what the output will
be at lines X and Y.

#include <sys/types.h>
#include <stdio.h>
#include <unistd.h>

int main()
{
pid t pid;

/* fork a child process */
pid = fork();

if (pid < 0) { /* error occurred */
fprintf(stderr, "Fork Failed");
return 1;

}
else if (pid == 0) { /* child process */

execlp("/bin/ls","ls",NULL);
printf("LINE J");

}
else { /* parent process */

/* parent will wait for the child to complete */
wait(NULL);
printf("Child Complete");

}

return 0;
}

Figure 3.2 When will LINE J be reached?



Exercises 13

#include <sys/types.h>
#include <stdio.h>
#include <unistd.h>

int main()
{
pid t pid, pid1;

/* fork a child process */
pid = fork();

if (pid < 0) { /* error occurred */
fprintf(stderr, "Fork Failed");
return 1;

}
else if (pid == 0) { /* child process */

pid1 = getpid();
printf("child: pid = %d",pid); /* A */
printf("child: pid1 = %d",pid1); /* B */

}
else { /* parent process */

pid1 = getpid();
printf("parent: pid = %d",pid); /* C */
printf("parent: pid1 = %d",pid1); /* D */
wait(NULL);

}

return 0;
}

Figure 3.3 What are the pid values?

3.21 What are the bene�ts and the disadvantages of each of the following?
Consider both the system level and the programmer level.

a. Synchronous and asynchronous communication

b. Automatic and explicit buffering

c. Send by copy and send by reference

d. Fixed-sized and variable-sized messages



14 Chapter 3 Processes

#include <sys/types.h>
#include <stdio.h>
#include <unistd.h>

#define SIZE 5

int nums[SIZE] = {0,1,2,3,4};

int main()
{
int i;
pid t pid;

pid = fork();

if (pid == 0) {
for (i = 0; i < SIZE; i++) {

nums[i] *= -i;
printf("CHILD: %d ",nums[i]); /* LINE X */

}
}
else if (pid > 0) {

wait(NULL);
for (i = 0; i < SIZE; i++)

printf("PARENT: %d ",nums[i]); /* LINE Y */
}

return 0;
}

Figure 3.4 What output will be at Line X and Line Y?


	Processes
	Exercises


