/rresat & \%E R
Corcarrency Ség

Practice Exercises

4.1

4.2

4.3

4.4

Provide three programming examples in which multithreading provides
better performance than a single-threaded solution.

Answer:

a. Aweb server that services each request in a separate thread

A parallelized application such as matrix multiplication where
various parts of the matrix can be worked on in parallel

c. Aninteractive GUI program such as a debugger where one thread is
used to monitor user input, another thread represents the running
application, and a third thread monitors performance

Using Amdahl’s Law, calculate the speedup gain of an application that
has a 60 percent parallel component for (a) two processing cores and (b)
four processing cores.

Answer:

a. With two processing cores we get a speedup of 1.42 times.

b. With four processing cores, we get a speedup of 1.82 times.

Does the multithreaded web server described in Section 4.1 exhibit task
or data parallelism?

Answer:
Data parallelism. Each thread is performing the same task, but on differ-
ent data.

What are two differences between user-level threads and kernel-level
threads? Under what circumstances is one type better than the other?

Answer:

a. User-level threads are unknown by the kernel, whereas the kernel
is aware of kernel threads.

113

114

Chapter4 Threads & Concurrency

4.5

4.6

4.7

b. On systems using either many-to-one or many-to-many model
mapping, user threads are scheduled by the thread library, and the
kernel schedules kernel threads.

c. Kernel threads need not be associated with a process, whereas
every user thread belongs to a process. Kernel threads are generally
more expensive to maintain than user threads, as they must be
represented with a kernel data structure.

Describe the actions taken by a kernel to context-switch between kernel-
level threads.

Answer:

Context switching between kernel threads typically requires saving the
value of the CPU registers from the thread being switched out and restor-
ing the CPU registers of the new thread being scheduled.

What resources are used when a thread is created? How do they differ
from those used when a process is created?

Answer:

Because a thread is smaller than a process, thread creation typically
uses fewer resources than process creation. Creating a process requires
allocating a process control block (PCB), a rather large data structure.
The PCB includes a memory map, a list of open files, and environment
variables. Allocating and managing the memory map is typically the
most time-consuming activity. Creating either a user thread or a kernel
thread involves allocating a small data structure to hold a register set,
stack, and priority.

Assume that an operating system maps user-level threads to the kernel
using the many-to-many model and that the mapping is done through
LWPs. Furthermore, the system allows developers to create real-time
threads for use in real-time systems. Is it necessary to bind a real-time
thread to an LWP? Explain.

Answer:

Yes. Timing is crucial to real-time applications. If a thread is marked as
real-time but is not bound to an LWP, the thread may have to wait to
be attached to an LWP before running. Consider a situation in which a
real-time thread is running (is attached to an LWP) and then proceeds
to block (must perform 1/0, has been preempted by a higher-priority
real-time thread, is waiting for a mutual exclusion lock, etc.). While the
real-time thread is blocked, the LWP it was attached to is assigned to
another thread. When the real-time thread has been scheduled to run
again, it must first wait to be attached to an LWP. By binding an LWP to
a real-time thread, you are ensuring that the thread will be able to run
with minimal delay once it is scheduled.

	Threads & Concurrency
	Exercises

