
14CHAPTER

File -System
Implementation

Practice Exercises

14.1 Consider a �le currently consisting of 100 blocks. Assume that the
�le-control block (and the index block, in the case of indexed alloca-
tion) is already in memory. Calculate how many disk I/O operations
are required for contiguous, linked, and indexed (single-level) alloca-
tion strategies, if, for one block, the following conditions hold. In the
contiguous-allocation case, assume that there is no room to grow at the
beginning but there is room to grow at the end. Also assume that the
block information to be added is stored in memory.

a. The block is added at the beginning.

b. The block is added in the middle.

c. The block is added at the end.

d. The block is removed from the beginning.

e. The block is removed from the middle.

f. The block is removed from the end.

Answer:
The results are:

Contiguous Linked Indexed

a. 201 1 1
b. 101 52 1
c. 1 3 1
d. 198 1 0
e. 98 52 0
f. 0 100 0

14.2 Whymust the bit map for �le allocation be kept onmass storage, rather
than in main memory?

Answer:

559



560 Chapter 14 File-System Implementation

In case of a system crash (memory failure), the free-space list would not
be lost, as it would be if the bit map had been stored in main memory.

14.3 Consider a system that supports the strategies of contiguous, linked,
and indexed allocation.What criteria should be used in decidingwhich
strategy is best utilized for a particular �le?

Answer:

• Contiguous—if �le is usually accessed sequentially, if �le is rela-
tively small.

• Linked—if �le is large and usually accessed sequentially.

• Indexed—if �le is large and usually accessed randomly.

14.4 One problem with contiguous allocation is that the user must preallo-
cate enough space for each �le. If the �le grows to be larger than the
space allocated for it, special actions must be taken. One solution to
this problem is to de�ne a �le structure consisting of an initial con-
tiguous area of a speci�ed size. If this area is �lled, the operating sys-
tem automatically de�nes an over�ow area that is linked to the initial
contiguous area. If the over�ow area is �lled, another over�ow area
is allocated. Compare this implementation of a �le with the standard
contiguous and linked implementations.

Answer:
This method requires more overhead then the standard contiguous
allocation. It requires less overhead than the standard linked allocation.

14.5 How do caches help improve performance? Why do systems not use
more or larger caches if they are so useful?

Answer:
Caches allow components of differing speeds to communicate more
ef�ciently by storing data from the slower device, temporarily, in a
faster device (the cache). Caches are, almost by de�nition, more expen-
sive than the devices they are caching for, so increasing the number or
size of caches would increase system cost.

14.6 Why is it advantageous to the user for an operating system to dynami-
cally allocate its internal tables?What are the penalties to the operating
system for doing so?

Answer:
Dynamic tables allow more �exibility as a system grows—tables are
never exceeded, avoiding arti�cial use limits. Unfortunately, kernel
structures and code are more complicated, so there is more potential
for bugs. Dynamic tables use more system resources than static tables,
thus potentially taking system resources away from other parts of the
system as the system grows.


	File-System Implementation
	Exercises


